539 research outputs found

    Beamforming in Two-Way Fixed Gain Amplify-and-Forward Relay Systems with CCI

    Full text link
    We analyze the outage performance of a two-way fixed gain amplify-and-forward (AF) relay system with beamforming, arbitrary antenna correlation, and co-channel interference (CCI). Assuming CCI at the relay, we derive the exact individual user outage probability in closed-form. Additionally, while neglecting CCI, we also investigate the system outage probability of the considered network, which is declared if any of the two users is in transmission outage. Our results indicate that in this system, the position of the relay plays an important role in determining the user as well as the system outage probability via such parameters as signal-to-noise imbalance, antenna configuration, spatial correlation, and CCI power. To render further insights into the effect of antenna correlation and CCI on the diversity and array gains, an asymptotic expression which tightly converges to exact results is also derived.Comment: Accepted for presentation on IEEE International Conference on Communications (ICC 2012), Ottawa, Canada, June 201

    A novel equivalent definition of modified Bessel functions for performance analysis of multi-hop wireless communication systems

    Get PDF
    A statistical model is derived for the equivalent signal-to-noise ratio of the Source-to-Relay-to-Destination (S-R-D) link for Amplify-and-Forward (AF) relaying systems that are subject to block Rayleigh-fading. The probability density function and the cumulated density function of the S-R-D link SNR involve modified Bessel functions of the second kind. Using fractional-calculus mathematics, a novel approach is introduced to rewrite those Bessel functions (and the statistical model of the S-R-D link SNR) in series form using simple elementary functions. Moreover, a statistical characterization of the total receive-SNR at the destination, corresponding to the S-R-D and the S-D link SNR, is provided for a more general relaying scenario in which the destination receives signals from both the relay and the source and processes them using maximum ratio combining (MRC). Using the novel statistical model for the total receive SNR at the destination, accurate and simple analytical expressions for the outage probability, the bit error probability, and the ergodic capacity are obtained. The analytical results presented in this paper provide a theoretical framework to analyze the performance of the AF cooperative systems with an MRC receiver
    • …
    corecore