7,390 research outputs found

    Semilinear elliptic equations in thin regions with terms concentrating on oscillatory boundaries

    Get PDF
    In this work we study the behavior of a family of solutions of a semilinear elliptic equation, with homogeneous Neumann boundary condition, posed in a two-dimensional oscillating thin region with reaction terms concentrated in a neighborhood of the oscillatory boundary. Our main result is concerned with the upper and lower semicontinuity of the set of solutions. We show that the solutions of our perturbed equation can be approximated with ones of a one-dimensional equation, which also captures the effects of all relevant physical processes that take place in the original problem

    Fractional dynamics of coupled oscillators with long-range interaction

    Full text link
    We consider one-dimensional chain of coupled linear and nonlinear oscillators with long-range power-wise interaction. The corresponding term in dynamical equations is proportional to 1/∣n−m∣α+11/|n-m|^{\alpha+1}. It is shown that the equation of motion in the infrared limit can be transformed into the medium equation with the Riesz fractional derivative of order α\alpha, when 0<α<20<\alpha<2. We consider few models of coupled oscillators and show how their synchronization can appear as a result of bifurcation, and how the corresponding solutions depend on α\alpha. The presence of fractional derivative leads also to the occurrence of localized structures. Particular solutions for fractional time-dependent complex Ginzburg-Landau (or nonlinear Schrodinger) equation are derived. These solutions are interpreted as synchronized states and localized structures of the oscillatory medium.Comment: 34 pages, 18 figure
    • …
    corecore