2 research outputs found

    On the optimization of power assignment to support multicast applications in HAP-based systems

    Get PDF
    The goal of this research work is to investigate how efficient High Altitude Platforms (HAPs) can be in supporting Multimedia Broadcast/Multicast Service (MBMS) in scenarios in which the terrestrial coverage is not available. Specifically, we propose to implement an effective Radio Resources Management (RRM) policy into the HAP Radio Network Controller (H-RNC), whose main aim is to increase the overall system capacity. The proposed technique achieves its goal by dynamically selecting the most efficient multicast transport channel in terms of power consumption, chosen amongst Dedicated Channel (DCH), Forward Access Channel (FACH), and High Speed Downlink Shared Channel (HS-DSCH). Advantages deriving from the joint use of channels belonging to different categories are exploited. Results achieved when using the proposed RRM are quite manifest and witnesses to the necessity of providing such a feature when deploying integrated HAP/Terrestrial platforms supporting MBMS services.Peer ReviewedPostprint (published version

    On the optimization of power assignment to support multicast applications in HAP-based systems

    No full text
    The goal of this research work is to investigate how efficient High Altitude Platforms (HAPs) can be in supporting Multimedia Broadcast/Multicast Service (MBMS) in scenarios in which the terrestrial coverage is not available. Specifically, we propose to implement an effective Radio Resources Management (RRM) policy into the HAP Radio Network Controller (H-RNC), whose main aim is to increase the overall system capacity. The proposed technique achieves its goal by dynamically selecting the most efficient multicast transport channel in terms of power consumption, chosen amongst Dedicated Channel (DCH), Forward Access Channel (FACH), and High Speed Downlink Shared Channel (HS-DSCH). Advantages deriving from the joint use of channels belonging to different categories are exploited. Results achieved when using the proposed RRM are quite manifest and witnesses to the necessity of providing such a feature when deploying integrated HAP/Terrestrial platforms supporting MBMS services.Peer Reviewe
    corecore