321 research outputs found

    The Lazy Flipper: MAP Inference in Higher-Order Graphical Models by Depth-limited Exhaustive Search

    Full text link
    This article presents a new search algorithm for the NP-hard problem of optimizing functions of binary variables that decompose according to a graphical model. It can be applied to models of any order and structure. The main novelty is a technique to constrain the search space based on the topology of the model. When pursued to the full search depth, the algorithm is guaranteed to converge to a global optimum, passing through a series of monotonously improving local optima that are guaranteed to be optimal within a given and increasing Hamming distance. For a search depth of 1, it specializes to Iterated Conditional Modes. Between these extremes, a useful tradeoff between approximation quality and runtime is established. Experiments on models derived from both illustrative and real problems show that approximations found with limited search depth match or improve those obtained by state-of-the-art methods based on message passing and linear programming.Comment: C++ Source Code available from http://hci.iwr.uni-heidelberg.de/software.ph

    Message-Passing Algorithms for Quadratic Minimization

    Full text link
    Gaussian belief propagation (GaBP) is an iterative algorithm for computing the mean of a multivariate Gaussian distribution, or equivalently, the minimum of a multivariate positive definite quadratic function. Sufficient conditions, such as walk-summability, that guarantee the convergence and correctness of GaBP are known, but GaBP may fail to converge to the correct solution given an arbitrary positive definite quadratic function. As was observed in previous work, the GaBP algorithm fails to converge if the computation trees produced by the algorithm are not positive definite. In this work, we will show that the failure modes of the GaBP algorithm can be understood via graph covers, and we prove that a parameterized generalization of the min-sum algorithm can be used to ensure that the computation trees remain positive definite whenever the input matrix is positive definite. We demonstrate that the resulting algorithm is closely related to other iterative schemes for quadratic minimization such as the Gauss-Seidel and Jacobi algorithms. Finally, we observe, empirically, that there always exists a choice of parameters such that the above generalization of the GaBP algorithm converges

    Getting Feasible Variable Estimates From Infeasible Ones: MRF Local Polytope Study

    Full text link
    This paper proposes a method for construction of approximate feasible primal solutions from dual ones for large-scale optimization problems possessing certain separability properties. Whereas infeasible primal estimates can typically be produced from (sub-)gradients of the dual function, it is often not easy to project them to the primal feasible set, since the projection itself has a complexity comparable to the complexity of the initial problem. We propose an alternative efficient method to obtain feasibility and show that its properties influencing the convergence to the optimum are similar to the properties of the Euclidean projection. We apply our method to the local polytope relaxation of inference problems for Markov Random Fields and demonstrate its superiority over existing methods.Comment: 20 page, 4 figure
    • …
    corecore