1,812 research outputs found

    Adaptive Multicast of Multi-Layered Video: Rate-Based and Credit-Based Approaches

    Full text link
    Network architectures that can efficiently transport high quality, multicast video are rapidly becoming a basic requirement of emerging multimedia applications. The main problem complicating multicast video transport is variation in network bandwidth constraints. An attractive solution to this problem is to use an adaptive, multi-layered video encoding mechanism. In this paper, we consider two such mechanisms for the support of video multicast; one is a rate-based mechanism that relies on explicit rate congestion feedback from the network, and the other is a credit-based mechanism that relies on hop-by-hop congestion feedback. The responsiveness, bandwidth utilization, scalability and fairness of the two mechanisms are evaluated through simulations. Results suggest that while the two mechanisms exhibit performance trade-offs, both are capable of providing a high quality video service in the presence of varying bandwidth constraints.Comment: 11 page

    Secure Layered Transmission in Multicast Systems with Wireless Information and Power Transfer

    Full text link
    This paper considers downlink multicast transmit beamforming for secure layered transmission systems with wireless simultaneous information and power transfer. We study the power allocation algorithm design for minimizing the total transmit power in the presence of passive eavesdroppers and energy harvesting receivers. The algorithm design is formulated as a non-convex optimization problem. Our problem formulation promotes the dual use of energy signals in providing secure communication and facilitating efficient energy transfer. Besides, we take into account a minimum required power for energy harvesting at the idle receivers and heterogeneous quality of service (QoS) requirements for the multicast video receivers. In light of the intractability of the problem, we reformulate the considered problem by replacing a non-convex probabilistic constraint with a convex deterministic constraint. Then, a semidefinite programming relaxation (SDR) approach is adopted to obtain an upper solution for the reformulated problem. Subsequently, sufficient conditions for the global optimal solution of the reformulated problem are revealed. Furthermore, we propose two suboptimal power allocation schemes based on the upper bound solution. Simulation results demonstrate the excellent performance and significant transmit power savings achieved by the proposed schemes compared to isotropic energy signal generation.Comment: 7 pages, 3 figures, accepted for presentation at the IEEE International Conference on Communications (ICC), Sydney, Australia, 201

    Sleep Period Optimization Model For Layered Video Service Delivery Over eMBMS Networks

    Full text link
    Long Term Evolution-Advanced (LTE-A) and the evolved Multimedia Broadcast Multicast System (eMBMS) are the most promising technologies for the delivery of highly bandwidth demanding applications. In this paper we propose a green resource allocation strategy for the delivery of layered video streams to users with different propagation conditions. The goal of the proposed model is to minimize the user energy consumption. That goal is achieved by minimizing the time required by each user to receive the broadcast data via an efficient power transmission allocation model. A key point in our system model is that the reliability of layered video communications is ensured by means of the Random Linear Network Coding (RLNC) approach. Analytical results show that the proposed resource allocation model ensures the desired quality of service constraints, while the user energy footprint is significantly reduced.Comment: Proc. of IEEE ICC 2015, Selected Areas in Communications Symposium - Green Communications Track, to appea

    Resource Allocation Frameworks for Network-coded Layered Multimedia Multicast Services

    Get PDF
    The explosive growth of content-on-the-move, such as video streaming to mobile devices, has propelled research on multimedia broadcast and multicast schemes. Multi-rate transmission strategies have been proposed as a means of delivering layered services to users experiencing different downlink channel conditions. In this paper, we consider Point-to-Multipoint layered service delivery across a generic cellular system and improve it by applying different random linear network coding approaches. We derive packet error probability expressions and use them as performance metrics in the formulation of resource allocation frameworks. The aim of these frameworks is both the optimization of the transmission scheme and the minimization of the number of broadcast packets on each downlink channel, while offering service guarantees to a predetermined fraction of users. As a case of study, our proposed frameworks are then adapted to the LTE-A standard and the eMBMS technology. We focus on the delivery of a video service based on the H.264/SVC standard and demonstrate the advantages of layered network coding over multi-rate transmission. Furthermore, we establish that the choice of both the network coding technique and resource allocation method play a critical role on the network footprint, and the quality of each received video layer.Comment: IEEE Journal on Selected Areas in Communications - Special Issue on Fundamental Approaches to Network Coding in Wireless Communication Systems. To appea
    • …
    corecore