3 research outputs found

    Difference Covering Arrays and Pseudo-Orthogonal Latin Squares

    Get PDF
    Difference arrays are used in applications such as software testing, authentication codes and data compression. Pseudo-orthogonal Latin squares are used in experimental designs. A special class of pseudo-orthogonal Latin squares are the mutually nearly orthogonal Latin squares (MNOLS) first discussed in 2002, with general constructions given in 2007. In this paper we develop row complete MNOLS from difference covering arrays. We will use this connection to settle the spectrum question for sets of 3 mutually pseudo-orthogonal Latin squares of even order, for all but the order 146

    Generalized packing designs

    Full text link
    Generalized tt-designs, which form a common generalization of objects such as tt-designs, resolvable designs and orthogonal arrays, were defined by Cameron [P.J. Cameron, A generalisation of tt-designs, \emph{Discrete Math.}\ {\bf 309} (2009), 4835--4842]. In this paper, we define a related class of combinatorial designs which simultaneously generalize packing designs and packing arrays. We describe the sometimes surprising connections which these generalized designs have with various known classes of combinatorial designs, including Howell designs, partial Latin squares and several classes of triple systems, and also concepts such as resolvability and block colouring of ordinary designs and packings, and orthogonal resolutions and colourings. Moreover, we derive bounds on the size of a generalized packing design and construct optimal generalized packings in certain cases. In particular, we provide methods for constructing maximum generalized packings with t=2t=2 and block size k=3k=3 or 4.Comment: 38 pages, 2 figures, 5 tables, 2 appendices. Presented at 23rd British Combinatorial Conference, July 201
    corecore