2,741 research outputs found

    Exponential quantum enhancement for distributed addition with local nonlinearity

    Full text link
    We consider classical and entanglement-assisted versions of a distributed computation scheme that computes nonlinear Boolean functions of a set of input bits supplied by separated parties. Communication between the parties is restricted to take place through a specific apparatus which enforces the constraints that all nonlinear, nonlocal classical logic is performed by a single receiver, and that all communication occurs through a limited number of one-bit channels. In the entanglement-assisted version, the number of channels required to compute a Boolean function of fixed nonlinearity can become exponentially smaller than in the classical version. We demonstrate this exponential enhancement for the problem of distributed integer addition.Comment: To appear in Quantum Information Processin

    Constructive Relationships Between Algebraic Thickness and Normality

    Full text link
    We study the relationship between two measures of Boolean functions; \emph{algebraic thickness} and \emph{normality}. For a function ff, the algebraic thickness is a variant of the \emph{sparsity}, the number of nonzero coefficients in the unique GF(2) polynomial representing ff, and the normality is the largest dimension of an affine subspace on which ff is constant. We show that for 0<ϵ<20 < \epsilon<2, any function with algebraic thickness n3ϵn^{3-\epsilon} is constant on some affine subspace of dimension Ω(nϵ2)\Omega\left(n^{\frac{\epsilon}{2}}\right). Furthermore, we give an algorithm for finding such a subspace. We show that this is at most a factor of Θ(n)\Theta(\sqrt{n}) from the best guaranteed, and when restricted to the technique used, is at most a factor of Θ(logn)\Theta(\sqrt{\log n}) from the best guaranteed. We also show that a concrete function, majority, has algebraic thickness Ω(2n1/6)\Omega\left(2^{n^{1/6}}\right).Comment: Final version published in FCT'201

    On the normality of pp-ary bent functions

    Full text link
    Depending on the parity of nn and the regularity of a bent function ff from Fpn\mathbb F_p^n to Fp\mathbb F_p, ff can be affine on a subspace of dimension at most n/2n/2, (n1)/2(n-1)/2 or n/21n/2- 1. We point out that many pp-ary bent functions take on this bound, and it seems not easy to find examples for which one can show a different behaviour. This resembles the situation for Boolean bent functions of which many are (weakly) n/2n/2-normal, i.e. affine on a n/2n/2-dimensional subspace. However applying an algorithm by Canteaut et.al., some Boolean bent functions were shown to be not n/2n/2- normal. We develop an algorithm for testing normality for functions from Fpn\mathbb F_p^n to Fp\mathbb F_p. Applying the algorithm, for some bent functions in small dimension we show that they do not take on the bound on normality. Applying direct sum of functions this yields bent functions with this property in infinitely many dimensions.Comment: 13 page
    corecore