713 research outputs found

    Non-Additive Quantum Codes from Goethals and Preparata Codes

    Full text link
    We extend the stabilizer formalism to a class of non-additive quantum codes which are constructed from non-linear classical codes. As an example, we present infinite families of non-additive codes which are derived from Goethals and Preparata codes.Comment: submitted to the 2008 IEEE Information Theory Workshop (ITW 2008

    Non-Additive Quantum Codes from Goethals and Preparata Codes

    Full text link
    We extend the stabilizer formalism to a class of non-additive quantum codes which are constructed from non-linear classical codes. As an example, we present infinite families of non-additive codes which are derived from Goethals and Preparata codes.Comment: submitted to the 2008 IEEE Information Theory Workshop (ITW 2008

    New characterisations of the Nordstrom–Robinson codes

    Get PDF
    In his doctoral thesis, Snover proved that any binary (m,256,δ)(m,256,\delta) code is equivalent to the Nordstrom-Robinson code or the punctured Nordstrom-Robinson code for (m,δ)=(16,6)(m,\delta)=(16,6) or (15,5)(15,5) respectively. We prove that these codes are also characterised as \emph{completely regular} binary codes with (m,δ)=(16,6)(m,\delta)=(16,6) or (15,5)(15,5), and moreover, that they are \emph{completely transitive}. Also, it is known that completely transitive codes are necessarily completely regular, but whether the converse holds has up to now been an open question. We answer this by proving that certain completely regular codes are not completely transitive, namely, the (Punctured) Preparata codes other than the (Punctured) Nordstrom-Robinson code

    Problems on q-Analogs in Coding Theory

    Full text link
    The interest in qq-analogs of codes and designs has been increased in the last few years as a consequence of their new application in error-correction for random network coding. There are many interesting theoretical, algebraic, and combinatorial coding problems concerning these q-analogs which remained unsolved. The first goal of this paper is to make a short summary of the large amount of research which was done in the area mainly in the last few years and to provide most of the relevant references. The second goal of this paper is to present one hundred open questions and problems for future research, whose solution will advance the knowledge in this area. The third goal of this paper is to present and start some directions in solving some of these problems.Comment: arXiv admin note: text overlap with arXiv:0805.3528 by other author
    corecore