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New Characterisations of the
Nordstrom-Robinson codes

Neil I. Gillespie and Cheryl E. Praeger

ABSTRACT

In his doctoral thesis, Snover proved that any binary (m,256,5) code is equivalent to the
Nordstrom-Robinson code or the punctured Nordstrom-Robinson code for (m,d) = (16,6) or
(15, 5) respectively. We prove that these codes are also characterised as completely regular binary
codes with (m,d) = (16,6) or (15,5), and moreover, that they are completely transitive. Also,
it is known that completely transitive codes are necessarily completely regular, but whether the
converse holds has up to now been an open question. We answer this by proving that certain
completely regular codes are not completely transitive, namely, the (punctured) Preparata codes
other than the (punctured) Nordstrom-Robinson code.

1. Introduction

In [23], Hammons et al. proved that certain interesting non-linear codes can be efficiently
described as the image under the Grey map of Zy-linear codes (see Section 5 for appropriate
definitions). Their result has led to a significant research effort into Z4-linear codes; for various
classifications and constructions, see, for example, [6, 9, 10, 12, 17, 16, 28, 34, 42]; for
interesting applications to steganography, see [4, 24]; for connections to unimodular lattices,
respectively to semifield planes, see [5], and [26, 30]; for a database of Z4-linear codes, see [1],
and references within.

In their paper, Hammons et al. also gave an explanation to one of the outstanding problems in
coding theory, that the weight enumerators of the non-linear Kerdock codes and the Preparata
codes satisfy the MacWilliams identities. The first member of both of these families is the well
known Nordstrom-Robinson code A/, which is a non-linear (16, 256, 6) binary code with several
interesting properties. It is optimal, in the sense that it is the largest possible binary code of
length 16 with minimum distance 6, and it is twice as large as any linear binary code with the
same length and minimum distance. Moreover, Snover [40] proved that any binary (16, 256, 6)
code is equivalent to the Nordstrom-Robinson code. Analogous properties also hold for the
punctured Nordstrom-Robinson code, a non-linear (15,256,5) code. In this paper, we prove
that the Nordstrom-Robinson codes have other exceptional properties. First we prove that the
codes are completely transitive, and hence completely regular (see Definition 1). Then we show
that binary completely regular codes with the same length and minimum distance parameters
are equivalent to the Nordstrom-Robinson codes.

THEOREM 1.1. Any binary completely regular code of length m with minimum distance § is
equivalent to the Nordstrom-Robinson code, respectively the punctured Nordstrom-Robinson
code, if (m,d) = (16,6) or (15,5). Moreover, such a code is completely transitive.
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It is known that completely transitive codes are necessarily completely regular [21]. A
consequence of Theorem 1.1 is that the converse holds for binary codes with (m, d) = (16, 6) or
(15,5). This is similar to a result in [19] in which the authors proved that a binary completely
regular code with (m,d) = (12,6) or (11,5) is unique up to equivalence, and that such codes
are completely transitive. We demonstrate that the converse does not hold for any other code
in an infinite family containing these two codes.

As mentioned above, the Nordstrom-Robinson code of length 16 is the first member of
a family of completely regular codes called the Preparata codes (see [29, Section 7.4.3]
for a nice definition of the Preparata codes). It turns out that no other Preparata code
is completely transitive, and similarly, no other punctured Preparata code apart from the
punctured Nordstrom-Robinson code is completely transitive.

THEOREM 1.2. The (punctured) Nordstrom-Robinson code is the only member of the
(punctured) Preparata codes that is completely transitive. In particular, other than the
(punctured) Nordstrom-Robinson code, the (punctured) Preparata codes are completely
regular but not completely transitive.

As far as the authors are aware, these are the first examples of completely regular codes
shown not to be completely transitive.

In Section 2, we introduce the necessary definitions and preliminary results. Then in
Section 3 we prove that the Nordstrom-Robinson code and the punctured Nordstrom-
Robinson code are completely transitive, and we prove Theorem 1.2. We prove Theorem 1.1
in Section 4. In the final section we consider the natural question of whether the complete
transitivity of the Nordstrom-Robinson code could be determined from the Z4-linear structure
of its Z4-representation, the Octacode. We give a discussion which suggests that the binary
representation is the correct setting to prove that it is completely transitive.

2. Definitions and Preliminaries

The binary Hamming graph T' = H(m, 2) has vertex set V(I") = F5*, the set of m-tuples with
entries from the field Fo = {0,1}, and an edge exists between two vertices if and only if they
differ in precisely one entry. The Hamming distance d(ca, 3) between a, 3 € FJ* is the number
of entries in which the two vertices differ. Let M = {1,...,m}, and view M as the set of vertex
entries of I'. For v € FY*, the support of « is the set supp(a) = {i € M : «; # 0}, and the
weight of e is wt(a) = | supp(a)|.

A code C in T is a non-empty subset of V(I'), and a codeword is an element of C. The
minimum distance, ¢, of C is the smallest distance between distinct codewords of C. For any
vertex v € I', we define the distance of v from C to be

d(v,C) = min{d(v,B8) | B € C},
and the covering radius of C' to be

- d(v,C).
p= max (v, C)
We let C; denote the set of vertices that are distance ¢ from C. It follows that {C =
Co,C4,...,C,} forms a partition of V(I'), called the distance partition of C. The distance
distribution of C is the (m + 1)-tuple a(C) = (ag, ..., am) where

@B ec : da.p) =iy
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We observe that a; >0 for all ¢ and ag = 1. Moreover, a; =0 for 1 <i<d—1 and |C| =
> o a;. In the Hamming graph, the MacWilliams transform of the distance distribution of C,
a(C), is the (m + 1)-tuple &/(C) = (ay, . .., al,) where

aj, = > a; Ky (i) (2.1)
=0

with
k
(x\ (m—x
Ki(z) = 1) (. ).
#(2) ;( ) (J)(k—.7>
]_
It follows from [29, Lemma 5.3.3] that aj, > 0 for k € {0,1,...,m}.

The automorphism group Aut(T") of the binary Hamming graph is semi-direct product B x £
where B = SI" and £ = S,,, see [8, Theorem 9.2.1]. Let g = (g1,.-.,9m) € B, 0 € Land a =

(a1,..., ) € V(T). Then go acts on « in the following way:
a% = (a7 almet). (2.2)

Since the base group B = 57" of Aut(T") acts regularly on V(T'), we may identify B with the
group of translations of FJ*, and Aut(T") with a subgroup of the affine group AGL(m, 2). More
precisely B consists of the translations gg, where a% = o + 3 for o, 8 € F5*, and if 0 is the
zero vector, then Aut(I") = B x Aut(I')o where Aut(I')o (the stabiliser of 0 in Aut(I")) is the
group of permutation matrices in GL(m, 2). The automorphism group of a code C, Aut(C), is
the setwise stabiliser in Aut(T") of C. We let Perm(C') denote the group of permutation matrices
that fix C setwise. We say two codes C' and C’ in T" are equivalent if there exists z € Aut(T")
such that C* = C".

REMARK 1. In traditional coding theory, only weight preserving automorphisms of a code
are considered, and so in the binary case, Perm(C) is defined as the automorphism group of
a code. Consequently, established results about automorphism groups of certain codes refer to
Perm(C'), not Aut(C). However, if 0 € C' we note that Aut(C)g is equal to Perm(C).

DEFINITION 1. Let C be code in T' with distance partition {C,C1,...,C,}, and v € C;.
We say C is completely regular if |[T'x(7) N C| depends only on ¢ and k, and not on the choice
of v € C;. If there exists X < Aut(T") such that each C; is an X-orbit, then we say C' is
X-completely transitive, or simply completely transitive.

LEMMA 2.1. [32] Let C' be a completely regular code in T' with distance par-
tition {C,C4,...,C,}. Then C, is a completely regular code with distance partition
{C,,Cp_1q,...,C}.

If a code C is a subspace of FJ* with dimension k, we say C is a linear [m,k,d] code. If
C' is not a linear code we say C is a (m,|C|,d) code, where |C| denotes the cardinality of C.
A code is antipodal if a«+1 € C for all @ € C, where 1 = (1,...,1), otherwise we say C' is
non-antipodal.

Let o, B8 be two vertices in F5*. Then we say a is covered by 3 if for each non-zero component
«; of a it holds that «; = 5;. Let D be a set of vertices of weight k in I'. Then we say D is
a t-(m, k, \) design if for every vertex v of weight ¢, there exist exactly A vertices of D that
cover v. This definition coincides with the usual definition of a t-(m, k, \) design (see [11], for
example), in the sense that the rows of the incidence matrix of a t-design are the elements of
D.
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We let b denote the size of D. If D is a t-design, then it is also an j — (m, k, ;) design for
0<j<t—1][11, Corollary 1.6] where

v(e2)=(05) >

Using this fact we can deduce that
m k
A= b( > 2.4
<J> RV 24

For further concepts and definitions about t-designs see [11].

Let pe M ={1,...m}, and C be a code in FJ'. By deleting the same coordinate p from
each codeword of C', we obtain a code in ngq’ which we call the punctured code of C' with
respect to p. We can also think of this as the projection of C' onto J = M\{p}. Indeed, for
a general J = {i1,...,ix} C M, let 7y : Fp* — IF‘QJ‘ denote the projection onto the entries in
J, and define 7;(C) = {n;(a) : o € C}. When we project we would like to have some group
information available to us. We have an induced action of Aut(I'); = {go € Aut(T") : J7 = J}
as follows: for z € Aut(I") s, we define

@i B E

mi(a) — (e, (2:5)

and observe that ker x = {(g1,...,9m)o € Aut(I'); : j9 =j and g; =1 for j € J}.

The following is a consequence of a result proved by Van Tilborg [43, Thm. 2.4.7]. (Earlier
this was proved for uniformly packed codes in the narrow sense [38].) For a code C and a
positive integer k we denote by C(k) the set of weight k& codewords of C.

THEOREM 2.2. Let C be a completely regular code in I" that contains the zero vertex. Then

for each k with 6 < k <m and C(k) # 0, it holds that C(k) forms a t-design with t = |3].

2.1. The Nordstrom-Robinson code N

The Nordstrom-Robinson code was discovered by Nordstrom and Robinson in [33], and
independently by Semakov and Zinoviev in [37]. It is a binary, non-linear, (16,256,6) code,
and Snover proved that all binary (16,256, 6) codes are equivalent [40]. So if one desired, one
can take the definition of the code to be any (16,256, 6) code. However, in order for us to prove
the complete transitivity of the Nordstrom-Robinson code, we require the following description
due to Goethals [22].

Let G be the [24,12, 8] extended binary Golay code (defined, for example, in [11, p.131]),
chosen so that 4 = (1%,016) € G. Let J* = {1,...,8} and J = M\J*. We define the following
subcode of G:

C={acg :supp(@) NJ* =0}
For 1 <i <7, let &; be a codeword in G with supp(@;) N J* = {7,8} (such codewords exist in

G, see [31, p.73]), and let C* be the coset &; + C. It follows that C* consists of all the codewords
@ € G such that supp(&) N J* = {3, 8}.

DEFINITION 2. Let A =U!_, C', where C° = C. The Nordstrom-Robinson code N is defined
to be A with the first 8 coordinates deleted, that is, the projection code of A onto J.

Berlekamp proved that N is a binary (16,256, 6) code, and that Aut(N)e = Perm(N) = 2% :
A7 acting 3-transitively on 16 points [3], where O is the zero codeword in /. We also require the
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following. It is also known that Perm(G) & Ma, [31, Ch. 20], and hence Aut(G) = Ty x Perm(G)
where Tg is the group of translations generated by G [21]. Furthermore, by [14, p.96]

H :=Perm(G)5 = AGL(4,2) = 2* : Ag.

It follows that H has an induced action on J* that is permutationally isomorphic to Ag, and
also a faithful action on J. Moreover, H < Perm(C).

Semakov and Zinoviev [37] showed that the Nordstrom-Robinson code can partitioned into
the union of 8 cosets of the Reed-Muller code R(1,4). Indeed, this can be seen in the above
description. Let R be the subcode of N equal to the projection code of C onto J, and for
i=1,...,7 let R" be the projection code of C* onto J, so N = UZ:O R’ where R = R°. The
code R is the linear [16,5,8] Reed Muller code R(1,4) [31, p.74], and it follows, for each
i=1,...,7, that R" is a coset of R.

2.2. On the Complete regularity of the (Punctured) Preparata codes

The Nordstrom-Robinson code is the first member the Preparata codes [35], an infinite
family of non-linear binary codes. For each odd k > 3, the Preparata code P(k) has length
2k+1 contains 28! — 2(k + 1) codewords and has minimum distance 6 (see for example, [29,
Section 7.4.3]). The code P(3) is equivalent to the Nordstrom-Robinson code N of length 16. It
is well known that P(k) and the punctured Preparata code P(k)*, are both completely regular
for all odd k > 3 (see, for example, [41, Ex. 6.3]).

REMARK 2. The complete regularity of the (punctured) Preparata codes can be deduced
from earlier work of Semakov et al. [38]. They proved that the punctured Preparata codes
are uniformly packed (in the narrow sense) with covering radius 3, which also implies that
the Preparata codes have covering radius 4. They then showed that a uniformly packed code
(in the narrow sense) C' with covering radius p has exactly p + 1 different weight distributions
amongst all translates of C' [38, Thm. 4], which is an equivalent definition of a completely
regular code. A similar result for the Preparata codes can also be deduced from [38, Thm. 5].
Alternatively, Bassalygo and Zinoviev proved that the Preparata codes are uniformly packed
(in the wide sense) [2], and from this one can easily deduce that they are completely regular
(see, for example, [19, Lemma 2.3]).

3. Complete transitivity of the Nordstrom-Robinson codes

Let I' = H(16,2), and recall that Aut(N) is the stabiliser of N in Aut(I"). The following
homomorphism defines an action of Aut(N) on M ={1,...,16}.

p: Aut(N) —  Sig

go — O (3.1)

We let K = Aut(N) N'B denote the kernel of the map . We note that since N is the union
of cosets of R, the group T’r of translations generated by R is a subgroup of K.

THEOREM 3.1. N is completely transitive.

Proof. We first prove that for each 3 € A/, there exists an z € Aut(N') such that 3% = 0,
and hence Aut(N) acts transitively on N. Let 8 € N.If B € R then as T < K, gg € Aut(N),
and it follows that 39° = 3 + B = 0. Now suppose that 8 € A"\ R, and let 3 be the codeword
in A that projects onto 8. Then there exists a unique i € {1,...,7} such that 3 € C* = &; +C.
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Let g be the translation of F3* generated by @&, let o € H such that i = 8, and let z = go €
Aut(G). We claim that y(z) € Aut(N'), where x is as in (2.5).

Since o € Perm(C) it follows that (C*)* = (&; + &; + C)? = C° = C. In particular, 8" € C.
Furthermore, C* = (&; + C)? = &¢ + C. Now, because supp(&?) N J* = {i?,87} = {8,87} and
o stabilises J*, it follows that &7 € &go + C and so C* = &go + C = C*, where k = 8°. Now, for
j #ior0,consider C’ = &; + C. Then (&; + C)* = (&; + &; +C)° = (&; + &;)° + C, because
o € Perm(C). It follows that supp(@; + &;)NJ* ={j,i}, and so supp((@; + &;)?) NJ* =
{j7,i%} = {j7,8}. Consequently (&; + &;)? € &jo +C, and so (C7)* = &;» +C = C*, where
¢ = j°. Hence z fixes setwise A. Because N’ = 7;(A) we deduce that x(x) € Aut(N).

Since 3" € C, there exists n € R such that WJ(BI) =n.AsTr <K, gp € K, and so y =
X(2)gn € Aut(N), and we have, by (2.5),

BY = WJ(B)X(“”)Q" _ 7TJ(Bar:)gn =n =n+n=0.

Consequently, Aut(N) acts transitively on N.

Recall that N has covering radius p = 4 (Remark 2). Let N; denote the set of vertices at
distance 4 from A for i = 1,...,4. Since Aut(N)o = 2* : A; is acting 3-transitively on entries
and 0 = 6, one deduces that Aut(N)g acts transitively on I';(0) = I';(0) N N; for i =1,2,3.
Hence, by [19, Lemma 2.2], Aut(N) acts transitively on A; for i = 1,2, 3.

Let v be an element of Ny. Then there exists @ € N such that d(v,a) = 4. As Aut(N)
acts transitively on N, there exists x € Aut(N') such that a® = 0. In particular d(0, ") = 4,
and because Aut(N) preserves the distance partition of N, it follows that T'y(0) NN 4 # 0.
Also, let 8 be any codeword of weight 6, and let v* € I'4(0) be such that supp(v*) C supp(3).
Then d(v*, 3) = 2, and so I'4(0) N N2 # 0. Consequently, because Aut(N)g fixes setwise I'4(0)
and preserves the distance partition of A/, Aut(N\ ) has at least 2 orbits on I'4(0). Moreover,
we see in [15, Table XI] that Aut(N)o has exactly two orbits on I'4(0). Thus Aut(N)o acts
transitively on '4(0) N N4, and so, by [19, Lemma 2.2], Aut(N) acts transitively on Ny. [

COROLLARY 3.2. K =Tg and Aut(N)/K =2 2% : Ag.

Proof. Since Aut(N) acts transitively on N, and Aut(N)p =2%: A7, we have that
| Aut(N)| = 22| A7|. Moroever, Aut(N')/K is a 3-transitive subgroup of Sig containing 2 : A7,
and so, by the classification of finite 2-transitive groups of degree 16 (see [39], for example),
Aut(N) /K =2 2% : Ay, 2% 1 Ag, Ay or Si6. As Tr < K, the only possibility is that K = T and
Aut(N)/K =20 : Ag. O

3.1. The Punctured Nordstrom-Robinson Code PN

The punctured Nordstrom-Robinson code PN is a (15,256, 5) code (see, for example, [35]).
Moreover, since all (15,256, 5) codes are equivalent, we can assume without loss of generality
that PN is obtained from A by puncturing the first entry, as in [3]. Recall also (Remark 2)
that PN has covering radius 3. By [3, Lemma 6.5], Aut(PAN ) = A7 acting 2-transitively on
15 points. The action of Aut(PN)e = A7 on I'3(0) is equivalent to its action on the 3-element
subsets of M = {1,...,15}. The permutation characters for actions of A; on M, and on the
3-element subsets of M, have inner product equal to 2, see [14, p.10]. Hence A; has exactly
two orbits on 3-element subsets of M, so Aut(PN)g has exactly two orbits on I'3(0).

THEOREM 3.3. PN is completely transitive.
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Proof. Let M denote the set of entries of N" and J = M\{1}. Recall the homomorphism
x from (2.5) with kernel equal to kerx = ((g1,...,916)), where gy =(01) and g; =1 for
i # 1. Also note that Aut(N); is equal to Aut(N);y because J and {1} are disjoint sets.
Now, since Aut(N) NB = K = T (Corollary 3.2), it follows that Aut(N) Nker y = 1. Hence
X(Aut(N)1y) = Aut(N)qy, and it is straightforward to show that x (Aut(N)g1}) < Aut(PN).
Also K < Aut(N)y1y, and Aut(N)/K =2 2% : Ag, by Corollary 3.2. Thus Aut(N) gy /K = As.
As Aut(PN)o = Az, it follows from the orbit stabiliser theorem that

| Aut(PN)| < | PN || Aut(PN)o| = [K[|As| = | Aut(N) (13-

Hence, we deduce that Aut(N)gy = Aut(PN) and Aut(PN) acts transitively on PN.

As stated above, Aut(PN ) has exactly two orbits on I'3(0). Thus, by following a similar
argument to the one used the proof of Theorem 3.1, recalling that PA has coving radius 3 and
minimum distance 5, one deduces that Aut(PN) acts transitively on PN, for i =1,2,3. [

Recall from Section 2.2 that N is the first member the Preparata codes [35]. Theorem 1.2
follows from the next result.

PROPOSITION 3.4. The Preparata code P(k) and the punctured Preparata Code P(k)*
are completely transitive if and only if k = 3. In particular, for k > 3 odd, P(k) and P(k)* are
completely regular but not completely transitive.

Proof. First, let us consider Perm(P(k)) and Perm(P(k)*), the group of permutation
matrices that fix the respective code setwise. In [25], Kantor showed that, for odd k > 3,
Perm(P(k)) acts imprimitively on entries and Perm(7P(k)*) has order (2% — 1)k. However, it is
known that for any binary completely transitive code C of length m with minimum distance at
least 5, the group Perm(C') acts 2-homogeneously on entries [18, Prop. 2.5]. Therefore Perm(C')
acts primitively on entries and (}') divides | Perm(C)|. By combining this result with Kantor’s
results, and recalling that m = 2*+! or 2**! — 1 we deduce that P(k) and P(k)* are not
completely transitive for £ > 3. The backwards implication of the statement is a consequence
of Theorem 1.1. The complete regularity of P(k) and P(k)* for all odd k£ > 3 is well known
(see Section 2.2), which proves the final statement. O

4. Proof of Theorem 1.1

Let T'= H(m,2) and C be a completely regular code in I' with minimum distance §
for (m,d) = (16,6) or (15,5). Complete regularity and minimum distance are preserved by
equivalence, therefore, by replacing C' with an equivalent code if necessary, we can assume that
0 € C. Since C contains 0 and is completely regular, it follows that C(d) # 0, where C(d) is
the set of codewords of weight d. Hence, by Theorem 2.2, C'(J) forms a ¢-(m,d, \) design for
t = 2] and some positive integer A. Using (2.3) with j = 1 in the case (16, 6) and (2.4) with
j =2 in the case (15,5), we deduce that 2 divides A. Let S be the set of a € C(4) such that
{1,...,t} C supp(a). It follows that |S| = A, and as C has minimum distance §, we deduce
that supp(a) Nsupp(B) = {1, ..., t} for all distinct pairs of codewords e, 3 € S. Consequently,
a simple counting argument gives that

~+

m—
A< ——.
-6t
In both cases we deduce that A < 5, so A = 2 or 4. However, by Line 21 of [13, Table 3.37] and
Line 16 of [13, Table 1.28], it follows that a t-(m, d, A) design does not exist in both cases for

A= 2. Thus A = 4.
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Case (m,d0) = (16,6): In this case C(6) forms a 3-(16,6,4) design, which is therefore
also a j — (16,6, A;) design for j <3, and in particular, A = A3 =4, Ay =14, \; =42 and
Ao = 112. Let 8 € C(6) and define n; = |[{y € C(6) : supp(vy) Nsupp(B) = i}|. Because C(6) is
necessarily a simple design, it follows that ng = 1, and since 6 = 6 we deduce that ny = ns = 0.
Then, by applying [36, Thm. 5], we deduce that nz = 60, ngy =15, ny =36 and ng = 0.
Because ny # 0, it follows that T'19(3) N C # (), and therefore, because C is completely regular,
C(10) # 0. We now claim that 1 € C, and consequently, that C is antipodal. Suppose to the
contrary. Then 1+C, = C and p > § — 1 = 5, where p is the covering radius of C' [7, Thm. 11].
Moreover, because C(10) # 0, it holds that p < 6, and because § = 6, it follows from Lemma
2.1 that 1+C,_; = C; for i = 1,2. We now calculate the size of the set C3 in the distance
partition of C. To do this, we count the pairs {(v,v) € C5 x C' : d(v,8) = 3}. Counting this
set in two ways gives

Galrae)nel = (e1(3)

where v is any vertex in Cs. Fix v € I'3(0). It follows that that if 4 € I's(v) N C' then either
v =0 or v € C(6), and if the later holds then ~« covers v. Therefore, because C(6) forms a
3-(16,6,4) design, we deduce that |T'3(v) N C| =5, and so |C3| = |C| x 112. Now suppose that
p = 5. Then, by Lemma 2.1, |C| = |Cs|. However, |Ca| = |C| (126) which is a contradiction. Thus
p = 6. However, then Lemma 2.1 implies that |C|(2+ 2 x 16 4+ 2 x (126) +112) = 216, which is
a contradiction. Hence 1 € C' and C is antipodal. Therefore, if a(C) = (aq, . . ., am ), we deduce
that a; = a,,—; for all i. As |C(6)] = 112, it follows that

a(C) = (1,0,0,0,0,0,112, a7, ag, ar,112,0,0,0,0,0, 1).
We conclude from (2.1) and [29, Lemma 5.3.3] that the following constraints must hold:
9240 — 12a7 — 8ag > 0; —840 — 28a; + 28ag > 0,

with a7y > 0 and ag > 0. Solving these constraints gives that a; = 0 and ag = 30. Consequently
C'is a (16,256, 6) binary code, and so, by Snover’s result [40], C' is equivalent to the Nordstrom-
Robinson code, proving the first part of Theorem 1.1.

Case (m,6) = (15,5): Here C(5) forms a j— (15,5,);) design for j <2 with A= Xy =
4, A\ =14, and Ao =42. As above let 8 € C(5) and define n; = |{y € C(5) : supp(y)N
supp(B) = i}|. Since C(5) is a simple design with minimum distance § = 5, we deduce that
ns = 1, ng = ng = 0. By applying [36, Thm. 5], we calculate that ny = 30, n; = 5 and ng = 6.
Since ng = 6, a9 # 0 in the distance distribution of C'. Now, by following a similar argument
to the one we used in the previous case, we deduce that C' is in fact antipodal, and so

a(C) =(1,0,0,0,0,42, ag, ar, az,as,42,0,0,0,0,1)
Again, using the MacWilliams transform, we deduce that the following inequalities must hold:
630 — 6ag — 14a7 > 0; —210 — 6ag + 42a7 > 0; —390 + 6ag — 2a7 > 0,

with ag > 0, a7 > 0. These solve to give ag = 70 and a7 = 15, and so C' is a (15,256, 5) binary
code. Thus, by Snover’s result [40], C is equivalent to the punctured Nordstrom-Robinson
code, proving the second part of Theorem 1.1.

By [20, Lemma 2], complete transitivity is preserved by equivalence, and by Theorem 3.1
and Theorem 3.3, the Nordstrom-Robinson codes are completely transitive. Consequently, in
both cases, C' is completely transitive, proving the final statement of Theorem 1.1.
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5. Nordstrom-Robinson Code as a Z4-linear code

The Nordstrom-Robinson code is also the first member of another infinite family of non-linear
binary codes, the Kerdock codes [27]. For each odd k > 3, the Kerdock code K(k) is a code of
length 281 with K(3) equal to A. The codes K(k) and P (k) are formally dual, by which we
mean the distance distribution of one can be obtained by taking the MacWilliams transform of
the distance distribution of the other. In particular, the Nordstrom-Robinson code is formally
self dual. However, as these codes are non-linear, neither is the dual code of the other. It was
not until work by Hammons et al. [23] on linear codes over Z, that an explanation for this
phenomenon was discovered.

To describe Hammons et al. work, we first define the Lee metric. We define dy(a,b) for
a,b € Zy as follows: dr(a,b) = 2 if and only if {a,b} = {0,2} or {1, 3}, otherwise dr(a,b) = 1.
We extend this definition to m-tuples of Z4, that is, the Lee distance between o, 3 € Z}* is

dp(e, ) = dr(ai, Bi).
i=1

We define the Grey map to be the bijection f : Zy — F2 given by
f(0) =00, f(1) =01, f(2) =11, f(3) =10, (5.1)

and we extend this map to a bijection from ZJ* to F3™ by

¢((ar, . am)) = (flar), ..., flam)).

The map ¢ is an isometry from Z7*, with the Lee metric, to F3™, with the Hamming metric
(23, Thm. 1].

A linear code C over Z, of length m is an additive subgroup of Z}*. An inner product on Z}"
is defined tobe - B8 = 181 + ... + @B mod 4 from which the usual notion of a dual code
C+ can be defined. Hammons et al. proved that the Kerdock codes and the Preparata codes
of length 251 are the image under ¢ of certain linear codes Cx and Cp in ZJ*, where m = 2*.
Moreover, these codes are dual codes of each other in ZJ*, that is Cit =Cp, explaining why
the distance distributions are related as they are.

Let T' be the graph with V(I') = Z* and adjacency given by the Lee metric, that is,
a, 3 € V(T') are adjacent if and only if dy,(a, 3) = 1. Since ¢ is a bijective isometry from I" to
H(2m,?2), it follows that ¢ is a graph isomorphism. Therefore, I' and H (2m, 2) have isomorphic
automorphism groups, namely Aut(I") 2 S5 Ss,,. Moreover, a code C' is completely transitive
in T if and only if it is completely transitive in H(2m,2). Thus, we have the following.

ProrOSITION 5.1. The Octacode, the Z4-representation of the Nordstrom Robinson code,
is completely transitive.

It is natural to ask if one can prove that a code in I is completely transitive without appealing
to its binary representation. Our interpretation of this question is that the symmetries involved
in the proof should preserve the module structure of Zj*. The largest subgroup of Aut(I") which
preserves this structure is determined in the following lemma.

LEMMA 5.2. Let T be defined as above. Then the subgroup G of Aut(T") that preserves the
Z}' structure in I' is isomorphic to Dg 1 .Sy, .

Proof. Any automorphism of I' that preserves ZjJ* structure must preserve the partition

{{1,2},{3,4},...,{2m — 1,2m}}
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in its action on the vertex entries of H(2m,2). The largest subgroup of Aut(H (2m,2)) that
preserves this partition is Sz (S21Sy,). Writing this as a subgroup of the wreath product
acting on ZJ*, this is equal to (S2152)1Sm,. Now S21S2 = Ds. Therefore the group G of
automorphisms of I' that preserve the ZJ* structure is a subgroup of Dg ! Sy,.

Now let H be the group generated by the permutations (0, 1,2, 3) and (0, 2) of Z4, so H = Ds.
The group HS,, = H™ x S, acts on the vertices of Z}" in its product action (similar to the
action of S31.Sa, on the vertices of the Hamming graph H(2m,2) given in (2.2)). It is clear
that S,, preserves adjacency in I'. Moreover, by placing the elements of Z, on the corners of a
square, one deduces that H preserves the Lee metric on Z4, and so H™ preserves adjacency in
I'. Thus H S,, < G. O

Our view of symmetry of a Zs-code C allows all symmetries of C' in Aut(I") = Sy Sop.
Namely we consider the full symmetry group to be the setwise stabiliser of C in S So,.
Since Dg! S,, < S2 159y, this group may be the same as the stabiliser of C' in Dg! S,,, or it
may be larger. If it is larger then there is the potential for the larger group to act completely
transitively while the group preserving the Z4-structure does not. Indeed this is the case for
the Nordstrom-Robinson code and its Z4-representation the Octacode. That is to say, it is
straightforward to show that the stabiliser of the Octacode in Dg?.5,, is properly contained
in its stabiliser in Aut(I') and does not act completely transitively on the code. Therefore, to
prove the complete transitivity of the Nordstrom-Robinson code (and thus the Octacode), one
should consider its binary representation.

Acknowledgement. The authors would like to thank the anonymous referees for their helpful
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