30 research outputs found

    On the minimum degree of minimal Ramsey graphs for multiple colours

    Full text link
    A graph G is r-Ramsey for a graph H, denoted by G\rightarrow (H)_r, if every r-colouring of the edges of G contains a monochromatic copy of H. The graph G is called r-Ramsey-minimal for H if it is r-Ramsey for H but no proper subgraph of G possesses this property. Let s_r(H) denote the smallest minimum degree of G over all graphs G that are r-Ramsey-minimal for H. The study of the parameter s_2 was initiated by Burr, Erd\H{o}s, and Lov\'{a}sz in 1976 when they showed that for the clique s_2(K_k)=(k-1)^2. In this paper, we study the dependency of s_r(K_k) on r and show that, under the condition that k is constant, s_r(K_k) = r^2 polylog r. We also give an upper bound on s_r(K_k) which is polynomial in both r and k, and we determine s_r(K_3) up to a factor of log r

    On the minimum degree of minimal Ramsey graphs

    Full text link
    We investigate the minimization problem of the minimum degree of minimal Ramsey graphs, initiated by Burr, Erdős, and Lovász. We determine the corresponding graph parameter for numerous bipartite graphs, including bi-regular bipartite graphs and forests. We also make initial progress for graphs of larger chromatic number. Numerous interesting problems remain open

    What is Ramsey-equivalent to a clique?

    Full text link
    A graph G is Ramsey for H if every two-colouring of the edges of G contains a monochromatic copy of H. Two graphs H and H' are Ramsey-equivalent if every graph G is Ramsey for H if and only if it is Ramsey for H'. In this paper, we study the problem of determining which graphs are Ramsey-equivalent to the complete graph K_k. A famous theorem of Nesetril and Rodl implies that any graph H which is Ramsey-equivalent to K_k must contain K_k. We prove that the only connected graph which is Ramsey-equivalent to K_k is itself. This gives a negative answer to the question of Szabo, Zumstein, and Zurcher on whether K_k is Ramsey-equivalent to K_k.K_2, the graph on k+1 vertices consisting of K_k with a pendent edge. In fact, we prove a stronger result. A graph G is Ramsey minimal for a graph H if it is Ramsey for H but no proper subgraph of G is Ramsey for H. Let s(H) be the smallest minimum degree over all Ramsey minimal graphs for H. The study of s(H) was introduced by Burr, Erdos, and Lovasz, where they show that s(K_k)=(k-1)^2. We prove that s(K_k.K_2)=k-1, and hence K_k and K_k.K_2 are not Ramsey-equivalent. We also address the question of which non-connected graphs are Ramsey-equivalent to K_k. Let f(k,t) be the maximum f such that the graph H=K_k+fK_t, consisting of K_k and f disjoint copies of K_t, is Ramsey-equivalent to K_k. Szabo, Zumstein, and Zurcher gave a lower bound on f(k,t). We prove an upper bound on f(k,t) which is roughly within a factor 2 of the lower bound

    Minimum Degrees of Minimal Ramsey Graphs for Almost-Cliques

    Full text link
    For graphs FF and HH, we say FF is Ramsey for HH if every 22-coloring of the edges of FF contains a monochromatic copy of HH. The graph FF is Ramsey HH-minimal if FF is Ramsey for HH and there is no proper subgraph F′F' of FF so that F′F' is Ramsey for HH. Burr, Erdos, and Lovasz defined s(H)s(H) to be the minimum degree of FF over all Ramsey HH-minimal graphs FF. Define Ht,dH_{t,d} to be a graph on t+1t+1 vertices consisting of a complete graph on tt vertices and one additional vertex of degree dd. We show that s(Ht,d)=d2s(H_{t,d})=d^2 for all values 1<d≤t1<d\le t; it was previously known that s(Ht,1)=t−1s(H_{t,1})=t-1, so it is surprising that s(Ht,2)=4s(H_{t,2})=4 is much smaller. We also make some further progress on some sparser graphs. Fox and Lin observed that s(H)≥2δ(H)−1s(H)\ge 2\delta(H)-1 for all graphs HH, where δ(H)\delta(H) is the minimum degree of HH; Szabo, Zumstein, and Zurcher investigated which graphs have this property and conjectured that all bipartite graphs HH without isolated vertices satisfy s(H)=2δ(H)−1s(H)=2\delta(H)-1. Fox, Grinshpun, Liebenau, Person, and Szabo further conjectured that all triangle-free graphs without isolated vertices satisfy this property. We show that dd-regular 33-connected triangle-free graphs HH, with one extra technical constraint, satisfy s(H)=2δ(H)−1s(H) = 2\delta(H)-1; the extra constraint is that HH has a vertex vv so that if one removes vv and its neighborhood from HH, the remainder is connected.Comment: 10 pages; 3 figure

    On globally sparse Ramsey graphs

    Full text link
    We say that a graph GG has the Ramsey property w.r.t.\ some graph FF and some integer r≥2r\geq 2, or GG is (F,r)(F,r)-Ramsey for short, if any rr-coloring of the edges of GG contains a monochromatic copy of FF. R{\"o}dl and Ruci{\'n}ski asked how globally sparse (F,r)(F,r)-Ramsey graphs GG can possibly be, where the density of GG is measured by the subgraph H⊆GH\subseteq G with the highest average degree. So far, this so-called Ramsey density is known only for cliques and some trivial graphs FF. In this work we determine the Ramsey density up to some small error terms for several cases when FF is a complete bipartite graph, a cycle or a path, and r≥2r\geq 2 colors are available
    corecore