18,749 research outputs found

    On the mean square error of randomized averaging algorithms

    Get PDF
    This paper regards randomized discrete-time consensus systems that preserve the average "on average". As a main result, we provide an upper bound on the mean square deviation of the consensus value from the initial average. Then, we apply our result to systems where few or weakly correlated interactions take place: these assumptions cover several algorithms proposed in the literature. For such systems we show that, when the network size grows, the deviation tends to zero, and the speed of this decay is not slower than the inverse of the size. Our results are based on a new approach, which is unrelated to the convergence properties of the system.Comment: 11 pages. to appear as a journal publicatio

    Higher order scrambled digital nets achieve the optimal rate of the root mean square error for smooth integrands

    Full text link
    We study a random sampling technique to approximate integrals ∫[0,1]sf(x) dx\int_{[0,1]^s}f(\mathbf{x})\,\mathrm{d}\mathbf{x} by averaging the function at some sampling points. We focus on cases where the integrand is smooth, which is a problem which occurs in statistics. The convergence rate of the approximation error depends on the smoothness of the function ff and the sampling technique. For instance, Monte Carlo (MC) sampling yields a convergence of the root mean square error (RMSE) of order N−1/2N^{-1/2} (where NN is the number of samples) for functions ff with finite variance. Randomized QMC (RQMC), a combination of MC and quasi-Monte Carlo (QMC), achieves a RMSE of order N−3/2+εN^{-3/2+\varepsilon} under the stronger assumption that the integrand has bounded variation. A combination of RQMC with local antithetic sampling achieves a convergence of the RMSE of order N−3/2−1/s+εN^{-3/2-1/s+\varepsilon} (where s≥1s\ge1 is the dimension) for functions with mixed partial derivatives up to order two. Additional smoothness of the integrand does not improve the rate of convergence of these algorithms in general. On the other hand, it is known that without additional smoothness of the integrand it is not possible to improve the convergence rate. This paper introduces a new RQMC algorithm, for which we prove that it achieves a convergence of the root mean square error (RMSE) of order N−α−1/2+εN^{-\alpha-1/2+\varepsilon} provided the integrand satisfies the strong assumption that it has square integrable partial mixed derivatives up to order α>1\alpha>1 in each variable. Known lower bounds on the RMSE show that this rate of convergence cannot be improved in general for integrands with this smoothness. We provide numerical examples for which the RMSE converges approximately with order N−5/2N^{-5/2} and N−7/2N^{-7/2}, in accordance with the theoretical upper bound.Comment: Published in at http://dx.doi.org/10.1214/11-AOS880 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Gossip Algorithms for Distributed Signal Processing

    Full text link
    Gossip algorithms are attractive for in-network processing in sensor networks because they do not require any specialized routing, there is no bottleneck or single point of failure, and they are robust to unreliable wireless network conditions. Recently, there has been a surge of activity in the computer science, control, signal processing, and information theory communities, developing faster and more robust gossip algorithms and deriving theoretical performance guarantees. This article presents an overview of recent work in the area. We describe convergence rate results, which are related to the number of transmitted messages and thus the amount of energy consumed in the network for gossiping. We discuss issues related to gossiping over wireless links, including the effects of quantization and noise, and we illustrate the use of gossip algorithms for canonical signal processing tasks including distributed estimation, source localization, and compression.Comment: Submitted to Proceedings of the IEEE, 29 page

    The asymptotical error of broadcast gossip averaging algorithms

    Full text link
    In problems of estimation and control which involve a network, efficient distributed computation of averages is a key issue. This paper presents theoretical and simulation results about the accumulation of errors during the computation of averages by means of iterative "broadcast gossip" algorithms. Using martingale theory, we prove that the expectation of the accumulated error can be bounded from above by a quantity which only depends on the mixing parameter of the algorithm and on few properties of the network: its size, its maximum degree and its spectral gap. Both analytical results and computer simulations show that in several network topologies of applicative interest the accumulated error goes to zero as the size of the network grows large.Comment: 10 pages, 3 figures. Based on a draft submitted to IFACWC201

    Ergodic Randomized Algorithms and Dynamics over Networks

    Full text link
    Algorithms and dynamics over networks often involve randomization, and randomization may result in oscillating dynamics which fail to converge in a deterministic sense. In this paper, we observe this undesired feature in three applications, in which the dynamics is the randomized asynchronous counterpart of a well-behaved synchronous one. These three applications are network localization, PageRank computation, and opinion dynamics. Motivated by their formal similarity, we show the following general fact, under the assumptions of independence across time and linearities of the updates: if the expected dynamics is stable and converges to the same limit of the original synchronous dynamics, then the oscillations are ergodic and the desired limit can be locally recovered via time-averaging.Comment: 11 pages; submitted for publication. revised version with fixed technical flaw and updated reference
    • …
    corecore