
Automatica 49 (2013) 2496–2501
Contents lists available at SciVerse ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

On the mean square error of randomized averaging algorithms✩

Paolo Frasca a,1, Julien M. Hendrickx b

a Department of Mathematical Sciences, Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino, Italy
b ICTEAM Institute, Université catholique de Louvain, Avenue Georges Lemaitre 4, B-1348 Louvain-la-Neuve, Belgium

a r t i c l e i n f o

Article history:
Received 17 November 2011
Received in revised form
5 February 2013
Accepted 18 April 2013
Available online 28 May 2013

Keywords:
Consensus algorithm
Randomized algorithm
Networked estimation

a b s t r a c t

This paper considers randomized discrete-time consensus systems that preserve the average ‘‘on
average’’. As a main result, we provide an upper bound on the mean square deviation of the consensus
value from the initial average. Then, we apply our result to systems in which few or weakly correlated
interactions take place: these assumptions cover several algorithms proposed in the literature. For such
systems we show that, when the network size grows, the deviation tends to zero, and that the speed of
this decay is not slower than the inverse of the size. Our results are based on a new approach, which is
unrelated to the convergence properties of the system.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In modern control and signal processing applications, effective
and easy-to-implement distributed algorithms for computing
averages are an important tool. As a significant and motivational
example, we consider the problem of estimating the expectation
of a random variable of interest. By the law of large numbers,
the sample average is an unbiased estimator, and its mean square
error decreases as the inverse of the number of samples increases,
provided that the random variables have finite second moment.
In a distributed setting, the sample values are available at the
nodes of a communication network, and the average needs to be
approximated by running an iterative consensus system, which
has the sample data as the initial condition. Clearly, we have to
ensure that, along the iterations of the consensus system, no (or
little) deviation from the correct average is introduced. However,
a global property such as average preservation may be harder to
satisfy when updates are performed asynchronously, unreliably,
or following a random scheme. In the case of stochastic updates,
a weaker requirement is the preservation of the expected average;
such systems are known to converge to a consensus under mild
conditions, but their consensus value is in general different from
the average: it is actually a random variable whose expected value
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is the initial average. In this paper, we consider linear randomized
asynchronous averaging algorithms, and we analyze the mean
square deviation of the consensus value from the initial average.
We want to ensure that this error is small, so that the averages are
computed accurately. In particular, we aim to provide conditions
underwhich themean square error tends to zerowhen the number
of samples, i.e., the number of nodes, grows. We will refer to this
property as the accuracy of the algorithm.

The opportunity of using randomized algorithms to compute
averages has already attracted significant interest, as testified by
recent surveys and special issues (Dimakis, Kar, Moura, Rabbat, &
Scaglione, 2010; Scaglione, Coates, Gastpar, Tsitsiklis, & Vetterli,
2011). Convergence theories for randomized linear averaging
algorithms have been developed by several authors. A classic
reference is (Cogburn, 1986), but more recently other conditions
have been used in a few works, including (Fagnani & Zampieri,
2008b; Matei & Baras, 2011; Tahbaz-Salehi & Jadbabaie, 2008,
2010; Touri, 2012). As we will formally define later, a random
linear averaging algorithm can be seen as a multiplication of
the node-indexed state by a random update matrix. In principle,
the variance of the consensus value can be exactly computed by
the formula given as Equation 7 in Tahbaz-Salehi and Jadbabaie
(2010), which involves the dominant eigenvectors of the first two
moments of the update matrix. Unfortunately, little is known
about these eigenvectors, and in particular explicit formulas
are not available, so these results are difficult to apply. A few
papers, on the other hand, have focused on specific examples of
randomized algorithms, obtaining results which are interesting,
although partial, from our perspective (Aysal, Yildiz, Sarwate, &
Scaglione, 2009; Fagnani & Frasca, 2011a,b; Fagnani & Zampieri,
2008a). Typically, these results are obtained as a by-product of
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a convergence analysis, and they involve the eigenvalues of the
update matrices, which are fairly well known for many families
of communication graphs. We will come back to these results in
Section 3 when discussing some example algorithms.

In this paper, we consider discrete-time consensus systems
with random updates that preserve the expected average, and we
provide new bounds on the mean square deviation of the current
average from the initial average. We show that under certain
conditions the expected increase of the deviation is bounded
proportionally to the expected decrease of the disagreement. We
then obtain bounds on the total deviation which are proportional
to the initial disagreement and, unlike previous results, are
actually independent of the convergence properties: indeed they
hold at all times regardless of convergence. Compared to those
already available in the literature, our bounds typically result
in less conservative (and often more general) estimates of the
deviation error and, remarkably, they are independent of the
global properties, such as the connectivity or graph spectrum and
eigensystem of the communication network. Instead, only local
network properties, such as the degree, play a role in the examples.
By contrast, we recall that results about convergence to consensus,
and speed of convergence, depend on global network properties.
Our estimates show that, under weak assumptions on the update
law, the deviation tends to zero when the number of nodes grows.
This is true for

(i) systems in which few updates take place simultaneously; and
(ii) systems in which the updates have small statistical depen-

dence across the network.

Thanks to their generality and to their dependence on local
network properties only, our results offer effective and easy-to-
implement guidelines to the designer who needs to choose a
network and an algorithm to solve an estimation problem.

Notation and preliminaries

The set of real numbers is denoted by R, and the set of
nonnegative integers by Z≥0. In this work, we use the notion of
a (weighted directed) graph, which we define as a pair G = (I, A),
where I is a finite setwhose elements are called nodes and A ∈ RI×I

is a matrix with nonnegative entries. Resorting to more standard
graph-theoretic jargon, we may equivalently think of an implicit
edge set E = {(i, j) ∈ I × I : Aij > 0}. For simplicity, we will
sometimes assume that a graph may have no loops, that is, Aii = 0
for every i ∈ I . Given a graph, that is, a nonnegative matrix A,
we can define an associated Laplacian matrix L(A) ∈ RI×I by
[L(A)]ij = −Aij if i ≠ j and [L(A)]ii =


j:j≠i Aij. Observe that

L(A) is positive semidefinite and that L(A)1 = 0, provided that
we denote by 1 the vector of suitable size whose components are
all 1. Besides, to any matrix L satisfying L1 = 0 with non-positive
off-diagonal elements, one can associate a correspondingweighted
graph. Finally, the conjugate transpose of the matrix A is denoted
by A∗, and inequalities A ≤ B between twomatrices A and B denote
the fact that A − B is negative semidefinite.

2. Problem statement and main result

Given a set of nodes I of finite cardinality N , we consider
the discrete-time random process x(·) taking values in RI and
defined as

xi(t + 1) =


j∈I

aij(t)xj(t) for all i ∈ I, t ∈ Z≥0, (1)

where, for every i, j ∈ I , we assume {aij(t)}t∈Z≥0 to be a sequence
of independent and identically distributed (i.i.d.) random variables
such that aij(t) ≥ 0 and


ℓ∈I aiℓ(t) = 1 for all t ≥ 0. System
(1) is run with the goal for the state of each node to provide a
good estimate of the initial average 1

N


i∈I xi(0). Note that x(0) is

unknown but given, and that all our results will be valid for any
x(0) ∈ RI . System (1) can be conveniently rewritten as

xi(t + 1) = xi(t) +


j∈I

aij(t)(xj(t) − xi(t))

for all i ∈ I, t ∈ Z≥0,

or in matrix form as

x(t + 1) = x(t) − L(t)x(t) t ∈ Z≥0, (2)

where the matrix L(t) is defined so that Lij(t) = −aij(t) if i ≠ j
and Lii(t) =


j:j≠i aij(t). Namely, L(t) is the Laplacian matrix of

a weighted graph (I, A(t)), where the entries of A(t) are defined
as [A(t)]ij = aij(t). The convergence of (2) has been addressed
in the literature: rather than in convergence, in this paper we are
interested in the quality of the convergence value, in terms of its
distance from the initial average. For our convenience, we denote
the average of x(t) by

x̄(t) =
1
N


i∈I

xi(t),

and we note that the average evolves according to x̄(t + 1) =

x̄(t) − 1∗L(t)x(t). The expected evolution of x̄(t), conditional on
the previous state, is written as E[x̄(t + 1)|x(t)]. Since under our
assumptions L(t) is independent of x(t), we immediately deduce
that E[x̄(t + 1)|x(t)] = x̄(t) if and only if 1∗E[L(t)] = 0. In
view of this fact, we restrict our attention to systems that preserve
the expected average, that is, we will assume that 1∗E[L(t)] = 0,
implying that

E[x̄(t)] = x̄(0) for all t ≥ 0.

Consequently, we are left with the problem of studying the
variance of x̄(t), that is, E[(x̄(t) − x̄(0))2]. We will derive all our
bounds from the following general result. For y ∈ RI , we denote
ȳ =

1
N


i yi and V (y) =

1
N


i


yi − ȳ

2
.

Theorem 1 (Accuracy Condition). Let x be an evolution of system (2).
If 1∗E[L(t)] = 0 and there exists γ > 0 such that

E[L(s)∗11∗L(s)] ≤ γ E[L(s) + L(s)∗ − L(s)∗L(s)], (3)

then, for every t ≥ 0, it holds that

E[(x̄(t) − x̄(0))2] ≤
γ

N + γ
V (x(0)).

If, moreover, the system converges to consensus (x(t) → x∞1, for
x∞ ∈ R), then E


(x∞ − x̄(0))2


≤

γ

N+γ
V (x(0)).

Note that γ

γ+N is increasing with γ : it is close to γ

N for small
values of γ , and close to 1 for large ones. The expected square
error is thus always bounded by the initial disagreement when
a valid γ can be found. And when a γ can be found which is
independent of N , then the algorithm is accurate, according to the
definition stated above. The bound of Theorem 1 may of course
be conservative compared with the exact characterizations of the
expected square error derived in Tahbaz-Salehi and Jadbabaie
(2010), but it presents the main advantage of being easy to use.
Indeed, we will see in the next section that general expressions of
γ can be obtained for large classes of systems.
Proof. We define C(y) := N(γ + N)ȳ2 + Nγ V (y), for all y ∈

RI , a linear combination of the square average value and the
disagreement,2 with a ratio γ

γ+N between the weights, with the

2 The authors wish to thank Giacomo Como for suggesting formulating the proof
in terms of this quantity C(y).
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intent of showing that the expectation of C(x(t)) is nonincreasing.
Webegin bydeveloping a simpler expression forC(y). Observe that
ȳ =

1
N 1

∗y, and that V (y) =
1
N

N
i=1(yi− ȳ)2 =

1
N (y−

1
N 11

∗y)∗(y−

1
N 11

∗y). Therefore,

C(y) = y∗


N(N + γ )

N2
11∗

+
Nγ

N

×


I − 2

1
N
11∗

+
1
N2

11∗11∗


y

= y∗

11∗

+ γ I

y.

We now show that E(C(y − Ly)) ≤ C(y) for any y ∈ RI , where
the Laplacian L is a random variable having the same distribution
as L(t). We can write the difference as

C(y − Ly) − C(y) = −y∗L∗(11∗
+ γ I)y − y∗(11∗

+ γ I)Ly
+ y∗L∗(11∗

+ γ I)Ly.

Since it is assumed that 1∗EL = 0, we then have

E[C(y − Ly) − C(y)]

= −y∗E

−γ L∗

− γ L + γ L∗L + L∗11∗L

y ≤ 0, (4)

where the last inequality follows from the assumption in (3).
Eq. (4) implies that, if x(t) follows the process (2), then E[C(x(t +

1))|x(t)] ≤ C(x(t)). As a result, if x̄(0) = 0, it holds that

N(γ + N)E[(x̄(t))2] + Nγ E[V (x(t))] ≤ Nγ V (x(0)),

and thus E(x̄(t))2 ≤
γ

N+γ
V (x(0)), since V (x(t)) ≥ 0, which proves

the result in that case. Otherwise, the result is obtained by applying
the previous inequality to the translated system x(t) − x̄(0)1. �

3. Applications and examples

In this section, we consider classes of systems of type (2) for
which we can apply Theorem 1, that is, for which we can find
γ satisfying (3). Before presenting these example systems, we
prove a general lemma which simplifies the search for γ : indeed,
the proofs of our results will involve estimating E(L∗11∗L) and
E(L∗L) in terms of E(L + L∗), where we recall that an inequality
between two matrices A ≤ B is intended as A − B being negative
semidefinite. Before the general lemma, we need the following
preliminary result.

Lemma 2. If the coefficients c1, . . . , cm are nonnegative, then it holds
that

m
i=1

cizi

2

≤

m
i=1

ci
m
i=1

ciz2i .

Proof. Let u, v ∈ Rm be defined by ui =
√
ci and vi =

√
cizi. Then,

from the Cauchy–Schwartz inequality,
m
i=1

cizi

2

=

u∗v

2
≤ (||u||2 ||v||2)

2

=


m
i=1

u2
i


m
i=1

v2
i


=


m
i=1

ci


m
i=1

ciz2i . �

Lemma 3 (Laplacian Bounds). Let L be the Laplacian of a weighted
directed graph with weight matrix A, define aii := 1 −


j≠i aij, and

let admin > 0 be such that aii ≥ admin for all i ∈ I .
(i) If 1∗L = 0, then

L∗L ≤ (1 − admin )(L + L∗). (5)

Now, let L be a randommatrix such that the lower bound admin is
valid almost surely.

(ii) If 1∗E(L) = 0, then

E(L∗L) ≤ (1 − admin )E(L + L∗). (6)

(iii) If 1∗E(L) = 0 and there exists β > 0 such that

E(L∗11∗L) ≤ β E(L + L∗),

then E[L∗11∗L] ≤ γ E[L + L∗
− L∗L] holds for γ =

β

admin
.

Proof. Let y ∈ RI be arbitrary but fixed. To prove claim (i), we
note that (Ly)i =


j aij(yi − yj), and therefore y∗L∗Ly =


i

j:j≠i aij(yi−yj)
2
. For every i, since 1−admin ≥


j:j≠i aij, Lemma2

implies that

(Ly)2i =


j:j≠i

aij(yj − yi)

2

≤ (1 − admin )

j:j≠i

aij

yj − yi

2
,

and by summing on i that

y∗L∗Ly ≤ (1 − admin )


i


j:j≠i

aij(yi − yj)2. (7)

Statement (i) then follows by noting that


i


j:j≠i aij(yj − yi)2 =

y∗(L + L∗)y because 1∗L = 0. We now prove statement (ii). It
follows from (7) that

y∗E(L∗L)y = E(y∗L∗Ly)

≤ E


(1 − admin )


i


j:j≠i

aij(yi − yj)2


= (1 − admin )


i


j:j≠i

E(aij)(yi − yj)2.

Since E(L) is a (deterministic) Laplacian and 1∗E(L) = 0, we can
apply the same argument leading to (5) in order to argue that

y∗E(L∗L)y ≤ (1 − admin )y∗E(L + L∗)y,

which implies (6). Finally, we prove claim (iii). It follows from (6)
that −(1 − admin )E(L + L∗) ≤ −E(L∗L). Therefore, the existence of
β implies that, for γ =

β

admin
, it holds that

E(L∗11∗L) ≤ β E(L + L∗)

≤ γ E(L + L∗) − γ (1 − admin )E(L + L∗)

≤ γ E

L + L∗

− L∗L

. �

When we apply Lemma 3 to a system of type (2), the quantity
admin is in fact a lower bound on the ‘‘self-confidence’’ aii(t) of the
nodes. For a constant β , the bound on the mean square error is
thus inversely proportional to the minimal self-confidence. This
remark is consistent with the intuition that, when aii(t) is very
small, the information held by some nodes may be almost entirely
‘‘forgotten’’ in one iteration, possibly resulting in large variations
of the average.

3.1. Limited simultaneous updates

In this section, we show that a scalar γ which satisfies the con-
dition in Theorem 1 can be found when the number of simultane-
ous updates, or at least their contribution, is small. The next result
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has the following interpretation: themean square deviation can be
bounded proportionally to the ratio between the ‘‘strength’’ of the
interactions in the system and the ‘‘self-confidence’’ of each node.
Note that, from now on, when studying the evolution of system
(2), we will for brevity avoid writing the dependence on time of
the random variables aij and L, if this causes no confusion.

Theorem 4 (Limited Updates). Consider system (2), and let aallmax and
admin be two positive constants such that almost surely


i


j:j≠i aij ≤

aallmax and aii ≥ admin for all i ∈ I . If 1∗E(L) = 0, then the condition
of Theorem 1 holds for

γ =
aallmax

admin
.

Proof. It follows from Lemma 2 that

y∗L∗11∗Ly =


i


j:j≠i

aij(yj − yi)

2

≤ aallmax


i


j:j≠i

aij

yj − yi

2
.

Therefore,

E

y∗L∗11∗Ly


≤ aallmax


i


j:j≠i

E(aij)

yj − yi

2
= aallmaxy

TE(L + L∗)y,

where we have used Lemma 3(i), so that E (L∗11∗L) ≤ aallmaxE[L +

L∗
]. The result follows from Lemma 3 (iii). �

Theorem 4 can be applied to several particular cases involving
small numbers of edges or small interactions; here, we discuss two
of them, drawn from the literature.

Example 1 (Asynchronous Asymmetric Gossip Algorithm (AAGA)).
Let a graph G = (I,W ) and q ∈ (0, 1) be given, such that 1∗W1 =

1. For every t ≥ 0, one edge (i, j) is sampled from a distribution
such that the probability of selecting (i, j) isWij. Then,

xi(t + 1) = (1 − q) xi(t) + q xj(t),

and xk(t + 1) = xk(t) for k ≠ i.

Observe that, if W1 = W ∗1, then 1∗E[L(t)] holds for the
AAGA, and we can apply Theorem 4 with aallmax = 1 − admin = q,
since only one node is sending its state to another. This leads to
γ =

q
1−q , meaning that the expected deviation of the asymptotic

value is not larger than 1
N

q
1−q+ q

N
V (x(0)). The AAGA system is also

studied in Fagnani and Zampieri (2008a, Section 4): the authors
prove, assuming that the components of x(0) are i.i.d. random
variables with variance σ 2, that the square deviation is not larger

than q− q
N

1−q+ q
N

1
N σ 2. Taking into account that the expected value of

V (x(0)) is

1 −

1
N


σ 2 in that case, we see that our bound allows

retrieving their result.
The next example, which applies very naturally to wireless

networks, has attracted significant attention (Aysal andYildiz et al.,
2009; Dimakis et al., 2010; Fagnani & Zampieri, 2008b).

Example 2 (Broadcast Gossip Algorithm (BGA)). Let a graph G =

(I,W ) and q ∈ (0, 1) be given, such that W ∈ {0, 1}I×I . For
every t ≥ 0, one node j is sampled from a uniform distribution
over I . Then, xi(t + 1) = (1 − q) xi(t) + q xj(t) if Wij > 0, and
xi(t +1) = xi(t) otherwise. In other words, one randomly selected
node broadcasts its value to all its neighbors, which update their
values accordingly.
Previous results about the deviation of the BGA are dependent
on the topology of the network. In Aysal and Yildiz et al. (2009,
Proposition 3), it is proved that the expected square deviation is
upper bounded by

V (x(0))


1 −

λ1

λN−1

1
1 −

1
2

q
N λN−1


,

where λi is the ith-smallest non-zero eigenvalue of the Laplacian
of the graph G. In Fagnani and Frasca (2011a, Proposition 3.3), the
authors obtain the upper bound 2V (x(0)) q

1−q
d 2
max
Nλ1

, where dmax is
the maximum degree of the graph. None of these bounds suffices
to show that the deviation goes to zerowhenN grows: for instance,
d 2
max
Nλ1

≥
N
π2 holds on a cycle graph. Accuracy is shown for cycles

and some other sequences of graphs in Fagnani and Frasca (2011b),
using Markov chain theory results from Fagnani and Delvenne
(2010), but a general proof of accuracy is not available in the
literature. Based on simulations, it was however conjectured in
Fagnani and Frasca (2011a) that the mean square error of the BGA
is proportional to the ratio between the degree and the number
of nodes. This fact can actually be proved by applying Theorem 4,
assuming thatW1 = W ∗1. Indeed, whenW1 = W ∗1, it holds that
E[L(t)] =

q
N L(W ) (where we remind the reader that L(W ) is the

Laplacian matrix corresponding to the weighted adjacency matrix
W ), and thus 1∗E[L(t)] = 0. Observe moreover that admin = 1 − q
and aallmax = qd col

max, since one node may send its value to at most
d col

max neighbors. Theorem 4 then implies that q
1−qd

col
max is a valid

value of γ , and a bound proportional to d col
max
N then follows from

Theorem 1. Finally, since every system admits a trivial aallmax = N ,
Theorem 4 also implies that a valid γ exists as soon as there is
a admin > 0 for which aii ≥ admin holds for all i. It then follows
from Theorem 1 that the expected square error is bounded by the
initial disagreement in all these cases. On the other hand, the AAGA
systemwith two nodes and q = 1, for which there is no such admin ,
is an example of a system for which no valid γ exists.

3.2. Uncorrelated updates

In this section we show that a small γ can still be found
even if there are many simultaneous updates, provided that
the correlation between the updates is sufficiently small. The
next result considers three cases: (a) all update coefficients are
uncorrelated, (b) nodes update their value according to any
stochastic scheme, but their decisions of update are uncorrelated to
that of the other nodes, (c) nodes transmit their values according
to any stochastic scheme, but their decisions of transmission are
uncorrelated to that of the other nodes.

Theorem 5 (Uncorrelated Updates). Consider system (2), and let
aindmax , armax , acmax , admin be positive constants such that aij ≤ aindmax
(with i ≠ j),


j:j≠i aij ≤ armax ,


i:i≠j aij ≤ acmax , and aii ≥ admin ,

respectively, hold almost surely. Suppose that 1∗E(L) = 0. The
following implications about the value of γ in Theorem 1 hold true.
(a) Uncorrelated coefficients: If all the aij are uncorrelated, then γ =

aindmax
admin

.
(b) Uncorrelated updates: If aij and akl are uncorrelated when i ≠ k,

then γ =
armax
admin

.
(c) Uncorrelated transmissions: If aij and akl are uncorrelated when

l ≠ j, then γ =
acmax
admin

.

Note that (b) implies that any scheme (preserving the expected
average), where nodes update their values independently and have
a minimal self-confidence, is accurate.
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Proof. We begin by proving (b), bounding E(L∗11∗L) proportion-
ally to E(L + L∗) in order to apply Lemma 3. Since 1∗EL = 0,
observe that E(L∗11∗L) = E(L∗11∗L) − E(L∗)11∗E(L). Besides,
1∗Ly =


i,j aij(yj − yi) holds for y ∈ RI . Therefore, we have

y∗E(L∗11∗L)y =


i,j,k,l


E[aijakl] − EaijEakl


(yj − yi)(yl − yk). (8)

According to assumption (b), if i ≠ k, then aij and akl are uncorre-
lated, so E(aijakl) = EaijEakl. We then have

y∗E(L∗11∗L)y =


i,j,l

E[aijail](yj − yi)(yl − yi)

−


i,j,l

EaijEail(yj − yi)(yl − yi)

= E


i


j

aij(yj − yi)

2

−


i


j

Eaij(yj − yi)

2

.

The second term in the last expression is clearly non-positive. Ap-
plying Lemma 2 for each i in the first term then leads to

y∗E(L∗11∗L)y ≤


i

E


j≠i

aij


j

aij

yj − yi

2

≤ armax E


i,j

aij

yj − yi

2
= armax y

∗E

L + L∗


y, (9)

where we have used the definition of armax and Lemma 3(i). Result
(b) then follows from Lemma 3(iii). Part (c) of the result is obtained
in a parallel way, using E(aijakl) = EaijEakl when j ≠ l instead of
i ≠ k after Eq. (8), and acmax instead of armax in Eq. (9). For part
(a), one has E(aijakl) = EaijEakl unless i = k and j = l. Therefore
Eq. (8) becomes

y∗E(L∗11∗L)y =


i,j

E[a2ij](yj − yi)2 −


i,j

(Eaij)2(yj − yi)2

≤ aindmax E


i,j

a2ij(yj − yi)2

,

which allows us to conclude, using again Lemma 3(i) and (iii). �

The following is a natural example of uncorrelated updates.

Example 3 (Synchronous Asymmetric Gossip Algorithm (SAGA)). Let
q ∈ (0, 1) and a graph G = (I,W ) be given, such that W1 = 1.
For every t ≥ 0, and every i ∈ I , one edge (i, ji) is sampled from
a distribution such that the probability of selecting (i, ji) is Wi,ji .
Then, for every i ∈ I , xi(t + 1) = (1 − q) xi(t) + q xji(t). In
other words, every node chooses one neighbor, reads its value, and
updates its own value accordingly.

Previous results on the SAGA are only able to guarantee
accuracy on certain sequences of graphs: in Fagnani and Zampieri
(2008a, Section 5), the authors derive an upper bound on the
deviation of the limit value, which for symmetricW and large N is
asymptotically equivalent to q

1−q
1
2N

1
1−esr(W )

V (x(0)), where esr(W )

is the second-largest absolute value of the eigenvalues of W . This
result fails to prove accuracy for some sequences of graphs: for
instance, on a cycle graph with positive Wij equal to 1/2, we have
1
2N

1
1−esr(W )

=
1
2N

1
cos

2π
N

V (x(0)) ≥
q

1−q
N

4π2 V (x(0)). Our approach
allows proving asymptotic accuracy independently of the topology
of the networks, provided that W is such that 1∗W = 1∗. Observe
indeed that E[L(t)] = qL(W ), and thus that 1∗E[L(t)] = 0.
Moreover, since every node receives information from exactly one
neighbor, it holds that armax = q and admin = 1−q. Since the choices
of neighbors are independent, we can apply Theorem 5(b) to show
that q

1−q is a valid value of γ , so that the expected square deviation
is bounded by q

1−q+ q
N
V (x(0)), as in the case of the AAGA.

3.3. Simultaneous correlated updates

We have seen that accurate systems are obtained when there
are few simultaneous updates or when the updates are uncorre-
lated. When these two conditions are not met, one can have sys-
tems whose expected square deviation is large with respect to
V (x(0)), or does not decrease when N grows. However, one should
not conclude that every system with unbounded and not strictly
uncorrelated updates must not be accurate. In particular, small
mean square errors can still occur for systems in which the up-
dates follow a probability law involving some partial correlations.
An example is the following algorithm, which generalizes the BGA
and has been proposed in Aysal, Sarwate, and Dimakis (2009).

Example 4 (Probabilistic Broadcast Gossip Algorithm (PBGA)). Let
q ∈ (0, 1) and G = (I,W ). At each time step, one node j, sampled
from a uniform distribution over I , broadcasts its current value.
Every node i receives the value with a probability Wij ∈ [0, 1].
When node i receives the value from j, it updates its value to
xi(t + 1) = xi(t) + q(xj(t) − xi(t)). Otherwise, xk(t + 1) = xk(t).

Proposition 6 (PBGA is Accurate). Assume that W = W ∗. Then,
Theorem 1 holds with γ = (Wmax + 1) q

1−q , where Wmax =

maxi∈I


j∈I Wij.

Proof. From Aysal and Sarwate et al. (2009, Lemma 2), we can
quickly derive that, for every t ≥ 0,

E[L(t)] =
q
N
L(W )

E[L(t)∗L(t)] = 2
q2

N
L(W )

E[L(t)∗11∗L(t)] =
q2

N
L(W )2 + 2

q2

N
L(W ) − 2

q2

N
L(W · W ),

whereW ·W denotes an entrywise product. The assumption onW
implies that 1∗E[L(t)] = 0, and in order to apply Theorem 1 we
have to find γ which satisfies the inequality

q2

N
L(W )2 + 2

q2

N
L(W ) − 2

q2

N
L(W · W )

≤ γ


2
q
N
L(W ) − 2

q2

N
L(W )


,

that is,

L(W )2 − 2L(W · W ) ≤ 2


γ
1 − q
q

− 1

L(W ).

Since any Laplacian – and in particular L(W · W ) – is positive
semidefinite, a sufficient condition for the previous inequality to
hold is

L(W )2 ≤ 2


γ
1 − q
q

− 1

L(W ).

Gershgorin’s disk lemma implies that the spectral radius of L(W )
is not larger than 2Wmax, and the result follows. �
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4. Conclusion and perspectives

We have developed a new way of evaluating the mean square
error of decentralized consensus protocols that preserve the ex-
pected average. Our results ensure that, under mild conditions,
distributed averaging can be performed via asymmetric and asyn-
chronous algorithms, with a loss in the quality of the estimate
which vanishes when the number of samples (and nodes) is
increased. This fact strongly supports the application of these
algorithms to large networks. Our analysis complements the re-
sults about the speed of convergence, which has been thoroughly
studied in the literature and was not reconsidered in this paper.
Regarding design issues, we indeed note that optimizing an algo-
rithm for accuracy may entail a slower convergence rate: for in-
stance, it is intuitive that, in the AAGA, larger values of q imply
faster convergence but poorer accuracy. Thanks to our results, the
speed/accuracy trade-off can be more precisely studied in a wide
range of examples.

Unlike certain previous approaches, which relied on the
convergence speed of these systems, our results are based on the
fact that the increase of the error can be bounded proportionally to
the decrease of the disagreement. As such, they are independent
of the speed at which the system converges, and therefore of the
spectral properties of the network, which determines this speed.
Notably, our bounds only involve local quantities such as the
degree of the nodes or the weight that they give to their neighbors’
values, as opposed to global ones such as the eigenvalues of the
network Laplacian. As local quantities are much easier to control
in distributed systems, our results are of immediate application in
design.

Our method has been applied to several known protocols:
although we have sometimes been very conservative when
deriving our bounds,wehave obtained bounds that eithermatch or
improve upon those available in the literature. In addition, results
from algorithmic simulations are closely matched by our bounds,
which appear to accurately capture the qualitative dependence
on the network size. Note that we have limited the number
of applications of our results presented here, in the interest of
concision and simplicity: some additional applications can be
found in Frasca and Hendrickx (in press).

Overall, two classes of systems were proved to be accurate:
those with sufficiently few or small simultaneous updates, and
those with sufficiently uncorrelated simultaneous updates. These
two apparently unrelated situations in reality present strong
similarities, because the updates taking place at different times are
assumed to be uncorrelated. This suggests that the real parameter,
which determines themean square error, is the level of correlation
between the updates taking place across the history of the system.
Further work could be devoted to formalize and quantify this
intuition on the importance of the correlations between the
updates. Finally, we note that – to the best of our knowledge – the
distribution of the final values for processes which do not preserve
the expected average has not been studied yet.
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