11 research outputs found

    Non-adaptive Group Testing on Graphs

    Full text link
    Grebinski and Kucherov (1998) and Alon et al. (2004-2005) study the problem of learning a hidden graph for some especial cases, such as hamiltonian cycle, cliques, stars, and matchings. This problem is motivated by problems in chemical reactions, molecular biology and genome sequencing. In this paper, we present a generalization of this problem. Precisely, we consider a graph G and a subgraph H of G and we assume that G contains exactly one defective subgraph isomorphic to H. The goal is to find the defective subgraph by testing whether an induced subgraph contains an edge of the defective subgraph, with the minimum number of tests. We present an upper bound for the number of tests to find the defective subgraph by using the symmetric and high probability variation of Lov\'asz Local Lemma

    Graph reconstruction with a betweenness oracle

    Get PDF

    Topology Discovery of Sparse Random Graphs With Few Participants

    Get PDF
    We consider the task of topology discovery of sparse random graphs using end-to-end random measurements (e.g., delay) between a subset of nodes, referred to as the participants. The rest of the nodes are hidden, and do not provide any information for topology discovery. We consider topology discovery under two routing models: (a) the participants exchange messages along the shortest paths and obtain end-to-end measurements, and (b) additionally, the participants exchange messages along the second shortest path. For scenario (a), our proposed algorithm results in a sub-linear edit-distance guarantee using a sub-linear number of uniformly selected participants. For scenario (b), we obtain a much stronger result, and show that we can achieve consistent reconstruction when a sub-linear number of uniformly selected nodes participate. This implies that accurate discovery of sparse random graphs is tractable using an extremely small number of participants. We finally obtain a lower bound on the number of participants required by any algorithm to reconstruct the original random graph up to a given edit distance. We also demonstrate that while consistent discovery is tractable for sparse random graphs using a small number of participants, in general, there are graphs which cannot be discovered by any algorithm even with a significant number of participants, and with the availability of end-to-end information along all the paths between the participants.Comment: A shorter version appears in ACM SIGMETRICS 2011. This version is scheduled to appear in J. on Random Structures and Algorithm

    Graph Reconstruction via Distance Oracles

    Full text link
    We study the problem of reconstructing a hidden graph given access to a distance oracle. We design randomized algorithms for the following problems: reconstruction of a degree bounded graph with query complexity O~(n3/2)\tilde{O}(n^{3/2}); reconstruction of a degree bounded outerplanar graph with query complexity O~(n)\tilde{O}(n); and near-optimal approximate reconstruction of a general graph

    Finding Weighted Graphs by Combinatorial Search

    Full text link
    We consider the problem of finding edges of a hidden weighted graph using a certain type of queries. Let GG be a weighted graph with nn vertices. In the most general setting, the nn vertices are known and no other information about GG is given. The problem is finding all edges of GG and their weights using additive queries, where, for an additive query, one chooses a set of vertices and asks the sum of the weights of edges with both ends in the set. This model has been extensively used in bioinformatics including genom sequencing. Extending recent results of Bshouty and Mazzawi, and Choi and Kim, we present a polynomial time randomized algorithm to find the hidden weighted graph GG when the number of edges in GG is known to be at most m2m\geq 2 and the weight w(e)w(e) of each edge ee satisfies \ga \leq |w(e)|\leq \gb for fixed constants \ga, \gb>0. The query complexity of the algorithm is O(mlognlogm)O(\frac{m \log n}{\log m}), which is optimal up to a constant factor
    corecore