2,935 research outputs found

    Comparison of multiphase SPH and LBM approaches for the simulation of intermittent flows

    Full text link
    Smoothed Particle Hydrodynamics (SPH) and Lattice Boltzmann Method (LBM) are increasingly popular and attractive methods that propose efficient multiphase formulations, each one with its own strengths and weaknesses. In this context, when it comes to study a given multi-fluid problem, it is helpful to rely on a quantitative comparison to decide which approach should be used and in which context. In particular, the simulation of intermittent two-phase flows in pipes such as slug flows is a complex problem involving moving and intersecting interfaces for which both SPH and LBM could be considered. It is a problem of interest in petroleum applications since the formation of slug flows that can occur in submarine pipelines connecting the wells to the production facility can cause undesired behaviors with hazardous consequences. In this work, we compare SPH and LBM multiphase formulations where surface tension effects are modeled respectively using the continuum surface force and the color gradient approaches on a collection of standard test cases, and on the simulation of intermittent flows in 2D. This paper aims to highlight the contributions and limitations of SPH and LBM when applied to these problems. First, we compare our implementations on static bubble problems with different density and viscosity ratios. Then, we focus on gravity driven simulations of slug flows in pipes for several Reynolds numbers. Finally, we conclude with simulations of slug flows with inlet/outlet boundary conditions. According to the results presented in this study, we confirm that the SPH approach is more robust and versatile whereas the LBM formulation is more accurate and faster

    Droplet collision simulation by multi-speed lattice Boltzmann method

    No full text
    Realization of the Shan-Chen multiphase flow lattice Boltzmann model is considered in the framework of the higher-order Galilean invariant lattices. The present multiphase lattice Boltzmann model is used in two dimensional simulation of droplet collisions at high Weber numbers. Results are found to be in a good agreement with experimental findings

    Generalized Lattice Boltzmann Method with multi-range pseudo-potential

    Get PDF
    The physical behaviour of a class of mesoscopic models for multiphase flows is analyzed in details near interfaces. In particular, an extended pseudo-potential method is developed, which permits to tune the equation of state and surface tension independently of each other. The spurious velocity contributions of this extended model are shown to vanish in the limit of high grid refinement and/or high order isotropy. Higher order schemes to implement self-consistent forcings are rigorously computed for 2d and 3d models. The extended scenario developed in this work clarifies the theoretical foundations of the Shan-Chen methodology for the lattice Boltzmann method and enhances its applicability and flexibility to the simulation of multiphase flows to density ratios up to O(100)

    Mesoscopic model for soft flowing systems with tunable viscosity ratio

    Get PDF
    We propose a mesoscopic model of binary fluid mixtures with tunable viscosity ratio based on the two-range pseudo-potential lattice Boltzmann method, for the simulation of soft flowing systems. In addition to the short range repulsive interaction between species in the classical single-range model, a competing mechanism between the short range attractive and mid-range repulsive interactions is imposed within each species. Besides extending the range of attainable surface tension as compared with the single-range model, the proposed scheme is also shown to achieve a positive disjoining pressure, independently of the viscosity ratio. The latter property is crucial for many microfluidic applications involving a collection of disperse droplets with a different viscosity from the continuum phase. As a preliminary application, the relative effective viscosity of a pressure-driven emulsion in a planar channel is computed.Comment: 14page
    • …
    corecore