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We propose a mesoscopic model of binary fluid mixtures with tunable viscosity ratio
based on a two-range pseudopotential lattice Boltzmann method, for the simulation of soft
flowing systems. In addition to the short-range repulsive interaction between species in the
classical single-range model, a competing mechanism between the short-range attractive
and midrange repulsive interactions is imposed within each species. Besides extending the
range of attainable surface tension as compared with the single-range model, the proposed
scheme is also shown to achieve a positive disjoining pressure, independently of the
viscosity ratio. The latter property is crucial for many microfluidic applications involving a
collection of disperse droplets with a different viscosity from that of the continuum phase.
As a preliminary application, the relative effective viscosity of a pressure-driven emulsion
in a planar channel is computed.
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I. INTRODUCTION

Soft flowing systems, such as emulsions, foams, colloidal glasses, among others, are ubiquitous
in nature and engineering, and a better understanding of their rheology is crucial to the advancement
of many fields of science and technology [1–8]. Usually, soft flowing systems show very complex
rheology, such as anomalous enhanced viscosity, structural and dynamical arrest, aging under
moderate shear, etc., whose precise and quantitative description requires major extensions of
nonequilibrium statistical mechanics [1,9]. These complex phenomena portray a complicated
scenario, which is quite challenging even for the most advanced computational methods based on the
solution of the Navier-Stokes (N-S) equations for nonideal fluids. First, tracking the time evolution
of complex interfaces between species and phases presents a serious hurdle for the macroscopic
methods. Moreover, these methods are based on the continuum assumption, which makes it very
challenging to capture the fundamental physics at micro- and mesoscales [10].

During the last three decades, a number of mesoscale methods based on kinetic theory have been
developed [11,12]. Among them, the lattice Boltzmann method (LBM) has achieved remarkable
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successes for the simulation of complex flowing systems [11,13–21]. In LBM simulations, the
fluid is usually represented by populations of fictitious particles colliding locally and streaming
to adjacent nodes along the links of a regular lattice. The scale-bridging nature of LBM allows
its natural incorporation of microscopic and/or mesoscopic physics, while the efficient collision-
streaming algorithm makes it computationally appealing [10,13,19]. Among the existing LB models
for multiphase and multicomponent systems, a very popular and widely used scheme is the
pseudopotential model, originally proposed by Shan and Chen (S-C) [15]. In the original pseu-
dopotential model (also named the S-C model), the interactions between populations of molecules
are modeled by a pseudointeraction between the fictitious particles based on a density-dependent
pseudopotential, and the phase separation is achieved through a short-range interaction between the
two fluid phases (liquid-gas in the case of multiphase single-component systems, and liquid-liquid
for mixture of immiscible fluids, as in the present case). A two-range pseudopotential LBM has been
proposed [22] that was proved able to simulate flowing soft-glassy materials [23,24], through the
competition between the standard S-C short-range interaction and an added mid-range interaction.
This method has obtained success in reproducing many features of the physics of these systems,
such as structural frustration, aging, elastoplastic rheology, in confined and unbounded flows of
microemulsions [25–28].

However, the two-range mesoscopic LBM suffers from the problem of a spurious viscosity
dependence in the pressure tensor, due to the discrete lattice effects introduced by the velocity
shift forcing scheme [23,24]. As analyzed by Benzi et al. [24], the kinetic part of the pressure
tensor includes τ -dependent terms [see Eq. (12) therein], which means that the surface tension
and equilibrium densities for the components in the model depend on the viscosities of the fluid
components. In addition, the model usually suffers numerical instabilities for multicomponent flows
with different viscosities. Guo et al. argued that the discrete lattice effects must be considered in the
introduction of the force field into LBM, and they proposed an alternative representation of the
forcing term [29]. In this work, we propose a merger between these two techniques, which proves
capable of achieving a new scheme with (1) tunable surface tension over a sizable range of values,
(2) a positive disjoining pressure, and (3) no spurious dependence on the fluid viscosity. The new
scheme is then used to compute the relative effective viscosity of pressure-driven emulsions in a
planar flow at nonunit viscosity ratios.

The remainder of this paper is structured as follows. In Sec. II we present the proposed two-range
pseudopotential model in detail. Section III gives extensive numerical experiments that validate
and highlight the most salient features of the model, including an application to pressure-driven
emulsions in a planar flow with different dynamic viscosities. Finally, concluding remarks are given
in Sec. IV.

II. TWO-RANGE PSEUDOPOTENTIAL LATTICE BOLTZMANN MODEL
WITH TUNABLE VISCOSITY RATIO

A. Forcing scheme

In the two-range pseudopotential model for complex flows, the motion of the fluid is represented
by a set of populations of fictitious particles (distribution functions) fk,i (x, t ) at position x and time
t , where the subscripts k and i denote fluid component and discrete velocity direction, respectively.
In this paper, two-dimensional flow problems are considered and the D2Q9 lattice ei = [|eix〉, |eiy〉]
(i = 0, 1, . . . , 8; see Fig. 1) is used. The lattice speed c = �x/�t = 1 and the lattice sound speed
cs = 1/

√
3 are adopted, in which �x and �t are the lattice spacing and time step. The evolution

equation for the distribution functions (DFs) is given by

fk,i (x + ei�t, t + �t ) − fk,i (x, t ) = −�t

τk

[fk,i (x, t ) − f
eq

k,i (ρk,ueq )] + �tCk,i , (1)

where τk is the relaxation time for each component which is related to the kinematic viscosity by
νk = (τk − 0.5�t )c2

s , and Ck,i is the forcing term by which a force field Fk is incorporated into
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FIG. 1. The discrete lattice used in this work. The fluid lives in the D2Q9 lattice, while the interactions
extend to the full D2Q25.

Eq. (1). The local equilibrium distribution function (EDF) is usually given by a low-Mach-number
truncation form as

f
eq

k,i (ρk,ueq ) = w(|ei |2)ρk

[
1 + ueq · ei

c2
s

+ uequeq :
(
eiei − c2

s I
)

c4
s

]
, (2)

where ρk is the density for each component, the weights are w(0) = 4/9, w(1) = 1/9, and w(2) =
1/36, and ueq is an effective velocity. To conserve the total momentum of particles of all components
in the absence of interparticle forces, the effective velocity must be given as [30]

ueq =
∑

k

ρkuk

τk

/∑
k

ρk

τk

, (3)

where ρkuk is the kth component momentum. In the original formulation proposed by Shan
et al. [15,31] and the recent two-range model [23–26], the force field is implemented via a shift
of the velocity in the EDF of each component, while the forcing term Ck,i is not written explicitly.
Using the general form in Eq. (1), it can be shown that the velocity-shift method corresponds to an
explicit forcing term [32]:

CSC
k,i = 1

τk

[
f

eq

k,i (ρk,ueq + Fkτk/ρk ) − f
eq

k,i (ρk,ueq )
]
. (4)

In addition, the component momentum in the original S-C model is calculated as ρkuk = ∑
i fk,iei ,

which is independent of the forcing field. The velocity-shift method can be regarded as a first-order
approach (in time), because the change in the momentum due to the force field is calculated using
the first-order numerical integration. As shown by different researchers [24,32–34], some additional
viscosity-dependent terms (related to the viscous stress tensor) are recovered in the macroscopic
equations by the velocity shift method, while the method by Guo et al. [29] eliminates this effect
by introducing extra compensating terms. It may be noted that the method by Guo et al. is not the
only way to accurately incorporate the force field into the lattice Boltzmann equation. It is also
possible to construct a forcing scheme using the second-order trapezoidal integration of the change
of the distribution due to the force field [35,36]. On the other hand, it has been shown recently
that a forcing scheme can be constructed based on the second-order time-splitting scheme [37,38],
where the changes in the momentum due to the force field, obtained via integration using a second-
order Crank-Nicholson scheme, are introduced by means of two half forcing time steps around the
collision step. More information on the recent discussions about the forcing schemes can be found
in Refs. [39–42] and references therein.
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In the present work we adopt the methodology of Guo et al., and the forcing term in Eq. (1) is
given by

CGuo
k,i =

(
1 − �t

2τk

)
w(|ei |2)

[
ei − ueq

c2
s

+ (ei · ueq )

c4
s

ei

]
· Fk. (5)

In the forcing term, the velocity is the same as the effective velocity in the EDF, as suggested by
Guo et al., while the density and momentum for the kth component are calculated as

ρk =
8∑

i=0

fk,i , ρkuk =
8∑

i=0

fk,iei + �tFk/2. (6)

The barycentric velocity of the fluid mixture is

u =
∑

k

ρkuk/ρ, (7)

where the total density is ρ = ∑
k ρk . It is seen that the barycentric velocity is not equal to ueq unless

all the components have the same viscosity. In the original method proposed by Guo et al. [29] where
the single-component flow is considered, the actual fluid velocity, the velocity in the forcing term
and the velocity in the EDF coincide. We wish to point out that, by replacing ueq in Eqs. (2) and (5)
by u, unphysical deformation of a dispersed droplet is observed unless a unity viscosity ratio is
used.

B. Competing mechanism and pressure tensor

A crucial characteristic of the two-range pseudopotential model is the competing mechanism
between the short-range attractive and mid-range repulsive interactions. The short-range interactions
act between the nearest-neighbor lattice nodes (connecting through the D2Q9 lattice), while the
mid-range interactions act between the next-to-nearest-neighbor lattice nodes extending up to a
D2Q25 lattice ej = [|ejx〉, |ejy〉] (j = 0, 1, …, 24; see Fig. 1). The competing interaction force is
explicitly written as [23,24]

Fc
k = −Gk,1ψk (x)

8∑
i=0

w(|ei |2)ψk (x + ei )ei − Gk,2ψk (x)
24∑

j=0

p(|ej |2)ψk (x + ej )ej , (8)

where Gk,1 and Gk,2 are the strength coefficients for the short-range and mid-range interac-
tions, respectively, and the weights for D2Q25 lattice are p(0) = 247/420, p(1) = 4/63, p(2) =
4/135, p(4) = 1/180, p(5) = 2/945, and p(8) = 1/15120. The pseudopotential originally sug-
gested by SC [15,31], ψk (ρk ) = ρ0(1 − e−ρk/ρ0 ) (with a uniform reference density ρ0 = 1.0 for
each component) is adopted.

For a multicomponent fluid system, a repulsive force acts among all components as usual [15],

Fr
k = −ρk (x)

∑
k̄

Gkk̄

8∑
i=0

w(|ei |2)ρk̄ (x + ei )ei , (9)

where Gkk̄ = Gk̄k are the strength coefficients for the intercomponent interaction. Supplemented
with the body force Fb

k , the total force in Eq. (5) is Fk = Fc
k + Fr

k + Fb
k . Although the model

is in principle able to simulate a system with an arbitrary number of components, we will
restrict ourselves to the most common case of a two-fluids mixture (i.e., k = A,B) with the
same strength coefficients (GA,1 = GB,1, GA,2 = GB,2, GAB = GBA) in practice [23,24]. More
specifically, a positive (negative) strength coefficient represents a repulsive (attractive) interaction.
For the competing interactions in Eq. (8) imposed within each species, phase-separating fluids
(vapor and liquid phases for each species) are confined to the condition [43] GA,1 + GA,2 < 0,
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FIG. 2. A sketch of different interactions on component A. Left panel: short-range attractive (GA,1 < 0)
and mid-range repulsive (GA,2 > 0) interactions within component A. Right panel: short-range repulsive
(GAB > 0) interaction between components A and B.

while in the present paper we set GA,1 + GA,2 = −1. The repulsive interactions between species
are used as usual, GAB > 0. A sketch of different interactions on component A is shown in Fig. 2.

To capture the complex rheological features of the soft flowing systems, it is crucial to analyze
the pressure tensor associated with the two-range pseudopotential model. According to the analysis
by Benzi et al. [24], the pressure tensor is defined as the sum of an interaction part plus a kinetic
part,

Pab = P int
ab + P kin

ab , (10)

where a and b run over the spatial coordinates. The bulk equation of state reads as follows:

pb(ρA, ρB ) =
∑

k=A,B

[
ρk + 1

2
(Gk,1 + Gk,2)ψ2

k

]
c2
s + GABρAρBc2

s . (11)

The interaction tensor is defined by the condition

∂bP
int
ab = −

∑
k

Fka, (12)

which is independent of the specific forcing scheme and can be obtained based on the expression
proposed by Shan [44]. Calculation details of P int

ab can be found in Dollet et al. [27] and Sbragaglia
and Belardinelli [45].

For the kinetic part, however, this is not the case. For the static interface problem considered in
the next subsection, the kinetic part in Eq. (10) is given by

P kin
ab =

∑
k,i

fk,ieiaeib. (13)

In the original two-range model [23,24], the explicit expression of P kin
ab is, P kin

ab = ∑
k

ρkc
2
s δab + Kτ

ab,

where Kτ
ab denotes the following extra τ -dependent terms:

Kτ
ab =

(
τ − 1

2

)2
FaFb

ρ
+ c4

s

ρAρB

ρ

(
τ − 1

2

)2(
∂aρA

ρA

− ∂aρB

ρB

)(
∂bρA

ρA

− ∂bρB

ρB

)
, (14)

where Fa = (FA,a + FB,a ) and τ = (ρAτA + ρBτB )/ρ. Due to the τ -dependent terms, the original
two-range model suffers numerical instability for two-component flow with a relative large viscosity
ratio. Moreover, the surface tension and disjoining pressure are dependent on the viscosity
ratio. Remarkably, the τ -dependent terms can be removed in the present model, due to proper
consideration of discrete lattice effects in the forcing scheme in Eqs. (5) and (6). As a result, the
present two-range model shows significant improvements compared with the original two-range
model in terms of tunable viscosity ratio and also in terms of eliminating the dependence of surface
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FIG. 3. A sketch for one and two interfaces between components A and B. Top panel: one interface case
for the calculation of the surface tension γ in Eq. (15). Bottom panel: two interfaces separated by a distance h

for the calculation of the overall line tension γf (h) in Eq. (16). When the distance h is large enough, γf (h) is
convergent to 2γ . By setting a series of h, the disjoining pressure can be calculated through Eq. (18).

tension and disjoining pressure on the viscosity ratio (see Sec. III). In addition, the total mass of
both species in the present model is conserved to machine accuracy.

C. Macroscopic effect of the mesoscopic interaction: The disjoining pressure

Paradigmatic soft materials, such as foams and emulsions, consist of dispersion of one fluid
(a gas in the case of foams, a liquid for emulsions) in another liquid; the dispersion is stabilized
against full phase separation by the presence of surfactants, which lower the interfacial energy, thus
inhibiting droplet (bubble) coalescence. A mechanical translation of this (microscopic) stabilization
effect of surfactants at mesoscopic level can be done borrowing the concept of disjoining (or
Derjaguin) pressure Π from the theory of thin liquid films [46]. In such a framework, the disjoining
pressure emerges as a repulsive force per unit area between opposing interfaces, due to interface-
interface interactions [46], that stabilizes the thin film. Analogously, for a thin film formed between
two droplets or bubbles to be stable, a (positive) disjoining pressure has to overcome the capillary
pressure at the curved interface [47]. As analyzed by Sbragaglia et al. [25], the pure short-range
interaction in the original S-C model [corresponding to Gk,1 = Gk,2 = 0 in Eq. (8)] always yields a
negative disjoining pressure. Notably, a positive disjoining pressure can be achieved in the two-range
model by tuning the strength coefficients at a fixed Gk,1 + Gk,2.

To quantitatively determine Π in our model, let us first consider a one-dimensional problem: a
flat interface orthogonal to the x coordinate (see Fig. 3). The surface tension can, then, be defined
as the integral of the mismatch between the normal (Pxx) and tangential (Pyy) components for the
pressure tensor,

γ =
∫ +∞

−∞
(Pxx − Pyy ) dx, (15)

where (Pxx − Pyy ) can be explicitly obtained via Eq. (10). We then consider two flat interfaces,
separated by a distance h (see Fig. 3); now the integral in Eq. (15) is defined as the overall line
tension,

γf (h) =
∫ +∞

−∞
(Pxx − Pyy ) dx. (16)
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FIG. 4. Sketch of the two-component Poiseuille flow.

As we can see, γf is a function of h, and the limit condition is γf (h → ∞) = 2γ . According to
Refs. [25,47], the disjoining pressure Π is defined as∫ Π (h)

Π (h=∞)
h dΠ = s(h), (17)

where s(h) = γf (h) − 2γ . A simple differentiation of Eq. (17) yields ds(h)/dh = hdΠ/dh.
Supplementing with the boundary condition Π (h → ∞) = 0, the disjoining pressure finally
reads as

Π (h) = s(h)

h
−

∫ ∞

h

s(h̃)

h̃2
dh̃. (18)

By setting a series of interface distances, Eq. (18) can be calculated using standard numerical
integration methods.

III. NUMERICAL SIMULATIONS

In this section, numerical simulations are conducted to verify the aforementioned arguments
and highlight the main features of the present two-range pseudopotential model. Unless otherwise
specified, the strength coefficients in Eq. (8) are set the same for both components (GA,1 = GB,1

and GA,2 = GB,2) with GA,1 + GA,2 = −1 [25,27], and the coefficient GAB is chosen such that the
interface width is about four lattice spacings [48].

A. Two-component Poiseuille flow

First, a two-component Poiseuille flow (along the x direction) driven by a body force is studied
(see also Fig. 4). In this flowing system, the nonwetting phase (component B) flows in the central
region of the channel, 0 < |y| < a, the wetting phase (component A) flows between the nonwetting
phase and the walls, a < |y| < b, and the dynamic viscosity ratio is M = μB

μA
= νB

νA
(M simplifies to

the kinematic viscosity ratio due to the unit density ratio considered). In our simulations, periodic
boundary conditions are applied along the x direction, the half-way bounce-back boundary scheme
is applied to the top and bottom walls, and the computational domain is covered by 10 × 160 lattice
nodes. The analytical solution for the problem is given by [48]

u(y) =
{

Fb

2μB
(a2 − y2) + Fb

2μA
(b2 − a2), 0 < |y| < a

Fb

2μA
(b2 − y2), a < |y| < b

, (19)

where the body force Fb acts on both components and b is set to 80�x, with b = 2a.
It is known that the velocity shift forcing scheme suffers numerical instability for two-component

flow with a relatively high kinematic viscosity ratio M [49]. All implementations of the original
two-range model so far were for M = 1 [23–25]. Figure 5 shows the comparison between numerical
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FIG. 5. Steady velocity profiles for two-component Poiseuille flow with different viscosity ratios, M =
{1/50, 1, 50} (from left to right); the profiles are normalized by the centerline velocity u0 = 0.05 (lbu). The
symbols are numerical results by the present two-range pseudopotential model, and the lines are the analytical
solutions.

results obtained by the present two-range model and the analytical solutions at different viscosity
ratios, M = {1/50, 1, 50} (from left to right). For the original two-range model, the simulation is
unstable for M > 5, thus it is not shown in the figure. For the present model, we consider three cases:
two of them corresponding to positive disjoining pressures (GA,1 = −6 and −8) and a reference
case (GA,1 = GA,2 = 0). It can be seen that the numerical results are in good agreement with
the analytical solutions, except for some small discrepancies near the interface. As analyzed in
Refs. [48,50], the small discrepancies may be related to the diffused interface feature in LBM and
have no significant effects on the flow away from the interface. These results prove that, with our
model, the viscosity ratio can be tunable over a relatively large range, still reproducing physically
correct results.

B. Tunable surface tension

In the single-range pseudopotential model, the surface tension can only be varied through the
parameter GAB . Because of the introduction of the competing mechanism, the surface tension in the
present two-range model can be also adjusted by tuning the parameters GA,1 and GA,2. To confirm
this statement, a series of Laplace’s tests are carried out to measure the surface tension under dif-
ferent conditions. Four different cases (GA,1 = 0, GA,2 = 0; GA,1 = −10, GA,2 = 9; GA,1 = 0,

GA,2 = −1 and GA,1 = 10,GA,2 = −11) are considered, in which the first case corresponds to the
classical single-range model. The tunable range of GAB and the achievable range of γ are shown
in Table I. The parameter GAB is tuned progressively with a 0.1 interval to find a range over which
the measured interface thickness W is within 2�x � W � 5�x; such a range is constrained since
interfaces that are too sharp (W < 2�x) suffer from numerical instability, and those that are too
wide (W > 5�x) deteriorate the numerical accuracy near the interface. The interface width W is
defined by fitting a hyperbolic tangent curve to the density profile [34], which can be rewritten
as W = (ρA,max − ρA,min)/(∂ρA/∂x)|ρ̄A

with ρ̄A = (ρA,max + ρA,min)/2 and solved using the finite
difference method (see Fig. 6).

TABLE I. Tunable range of GAB and the corresponding range of the surface tension γ for the present model
under different cases. The case without two-range interactions (GA,1 = 0, GA,2 = 0) is shown for comparison.

GA,1 = 0, GA,1 = −10, GA,1 = 0, GA,1 = 10,

Case GA,2 = 0 GA,2 = 9 GA,2 = −1 GA,2 = −11

Range of GAB [2.8,5.0] [2.0,3.4] [2.3,5.1] [2.9,7.2]
Range of γ [0.031,0.14] [0.0006,0.041] [0.028, 0.16] [0.081,0.27]
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x/Δx
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1

1.2
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N

FIG. 6. The density profile along the horizontal centerline for a steady droplet (component A) with
radius R = 42�x in the center of a periodic box: we measure the interface thickness as W = (ρA,max −
ρA,min )�x/[ρA(M ) − ρA(N )], where M and N are the two points near the location where ρ̄A = (ρA,max +
ρA,min )/2. The interface thickness is W = (1.041 − 0.008)�x/(0.644 − 0.336) = 3.35�x.

It can be seen from Table I that the achievable range for the single-range model is 0.031 �
γ � 0.14. For the two-range model, we have more freedom to tune the surface tension due to
the additional competing interactions, and for the four cases considered in this work, the achievable
range is 6 × 10−4 � γ � 0.27. Specifically, larger (smaller) GA,1 gives larger (smaller) surface
tension, because, at fixed GA,1 + GA,2, the diagonal elements of the interaction pressure tensor P int

ab

are proportional to GA,1 [see Eqs. (14)–(16) in Ref. [24]].
In addition, unlike the original two-range model [24], where the surface tension is viscosity-

dependent, in the present model the surface tension and viscosity ratio are decoupled, as will be
discussed in the next subsection.

C. Independence of surface tension and disjoining pressure on the viscosity ratio

The emergence of positive disjoining pressure is a unique feature of the two-range model, which
supports the stable thin film between two interfaces and distinguishes the two-range model from
the classical single-range model. To measure the disjoining pressure Π , we consider two planar
interfaces, separated by a distance h (see also Fig. 3). After γf (h) is obtained through Eq. (16)
for various h, the disjoining pressure can be calculated according to Eq. (18). To be general, we
introduce a dimensionless disjoining pressure Π∗ = Πh0/γ , where h0 ∼ O(10�x) is a length
scale defined as γf (h > h0) = 2γ . Firstly, we choose GAB = 3.0, and calculate the dimensionless
disjoining pressure as a function of the dimensionless distance h∗ = h/h0 for the present model
with different pairs of (GA,1,GA,2), as shown in Fig. 7. From the figure, we can see that for the case
(GA,1 = 0,GA,2 = 0), corresponding to the classical single-range model, the disjoining pressure is
always negative and decreases with h∗. For other cases with the two-range competing interactions,
the disjoining pressure increases with the decrease of h∗ first and then goes down, attaining positive
values in between.

Then we compare the original two-range model [23,24] with the present model in Fig. 8. For
the original model, some τ -dependent terms are reproduced in P kin

ab [see Eq. (14)], thus the surface
tension is dependent on the viscosity for each component. In this simulation, the measured surface
tensions at viscosity ratio M = {1/2, 1, 3} are 0.056, 0.043, and 0.039, respectively. Remarkably,
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FIG. 7. Dimensionless disjoining pressure Π∗ as a function of dimensionless distance h∗ for different
cases. For the case GA,1 = 0, GA,2 = 0(without two-range competing interactions), the disjoining pressure
decreases with h∗, thus it cannot support a stable thin film between two interfaces. For other cases (with
two-range competing interactions), with the decrease of h∗, the disjoining pressure increases gradually to a
peak and then goes down, which stabilizes the thin film. The peak value of disjoining pressure increases with
decreasing GA,1.

the τ -dependent terms in P kin
ab are removed by using the present forcing scheme. Under different

viscosity ratio M = {1/10, 1, 10}, the surface tension is approximately constant (with a maximum
relative error of 1.2%). As a result, the disjoining pressure depends on M significantly for the
original model in Refs. [23,24], while it is independent of M for the present model. To highlight
this point, we consider collisions of droplets of component A in a liquid matrix of component B. We
wish to point out that the configuration here is consistent with Fig. 3, because a thin film (component
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FIG. 8. Comparison of the obtained disjoining pressure Π∗ at different viscosity ratio M by the original
(left) and present (right) two-range models. For the original model [23,24], Π∗ changes substantially and even
changes the sign when M varies. For the present model, Π∗ is independent of M . It may be noted that the
profiles for the two models at M = 1 are approximately the same.
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FIG. 9. Snapshots (t∗ = tU/D) of two equal-sized droplets collision at viscosity ratio M = 1: (a) the
original two-range model and (b) the present two-range model.

B) is produced between the two droplets (component A) when the two droplets are approaching
each other. Two equal-sized droplets with a diameter D are initialized with a relative velocity U ,
which leads to a capillary number Ca = μAU

γ
≈ 0.3 and a Weber number We = ρADU 2

γ
≈ 15. First,

we choose a unity viscosity ratio μA = μB = 0.1. Due to the positive disjoining pressure, a stable
thin film between the droplets is supported, and the two droplets bounce back in the end, as shown
in Fig. 9. Then we change μB to 0.3. For the present model, the disjoining pressure is viscosity-
independent, thus the two droplets still bounce back in Fig. 10. However, the disjoining pressure
changes to be negative for the original model when M = μB

μA
= 3. As a result, the thin film cannot

be supported any longer, and the two droplets eventually coalesce.
The present model, which displays a disjoining pressure independent of the viscosity ratio,

represents a significant improvement with respect to the original model and makes it of major
significance for many applications where nonunit viscosity ratios are needed [51–56].

D. Pressure-driven emulsion in a planar channel

The method we have presented, because of its built-in properties, is particularly suitable to
simulate the hydrodynamics of emulsions, especially in dense situations. We move therefore to
simulate a multidroplet situation. We consider a pressure-driven flow in a planar channel of a
monodisperse emulsion, made of a regular arrangement of equal-size droplets (component A)
dispersed in a continuous matrix (component B). The simulations are performed on a L × L

FIG. 10. Snapshots (t∗ = tU/D) of two equal-sized droplets collision at viscosity ratio M = 3: (a) the
original two-range model and (b) the present two-range model.
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FIG. 11. Snapshots of pressure-driven emulsion in a planar channel at volume fraction � = 0.64 with
M = μB/μA = 1 (left panel), and M = 1/10 (right panel).

domain, with L = 220�x; no-slip boundary conditions for the velocity are imposed on the top
(y = L) and bottom (y = 0) walls; nonwetting boundary conditions for droplets apply, i.e., a contact
angle of θ = 180o is set for component A on both walls. A body force Fb in the x direction is
imposed to mimic a constant pressure gradient, which can be expressed in nondimensional form
as Fb = FbL

3ρB/(8μ2
B ) (notice that such an expression coincides with the Reynolds number that

would be achieved in the corresponding Poiseuille flow in the pure continuous phase, for the given
forcing Fb). The coupling parameters are GAB = 3.0, GA,1 = −7.4, GA,2 = 6.4, giving γ = 0.04,
and the droplet radius is set within 10�x < R < 20�x to obtain different volume fractions � of
the dispersed phase, � ∈ [0.18, 0.64] (typical snapshots of � = 0.64 are shown in Fig. 11).

When no droplets are present in the system (� = 0), the usual Poiseuille flow profile for a pure
fluid is obtained, as shown in the left panel of Fig. 12. In Fig. 12, left panel, we show the velocity

⎯
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Φ
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FIG. 12. Rheological feature of pressure-driven emulsion in a planar channel at F̄b = 37. Left panel:
x-direction average velocity profile as a function of y at different droplets volume fractions �. Right panel:
measured μr (symbols) as a function of droplets volume fraction �, where the solid line is a fit by a model
based on the differential effective medium theory [58].
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FIG. 13. Relative effective viscosity μr as a function of F b at different volume fractions �.

profile for different volume fractions at F̄b = 37 and M = 1, where ū is the average velocity along
x direction. As expected, when � is increased, the velocity profile flattens gradually in the central
region of the channel, which is consistent with previous results [25,54]. To quantify the effect of
increasing the volume fraction, we estimate the relative effective viscosity μr ≡ μeff/μB as the
ratio of flow rates μr (�) = Q(� = 0)/Q(�), where Q = ∫ L

0 ū(y) dy. A plot of μr as a function
of � at F̄b = 37 is shown in the right panel of Fig. 12. It can be seen that the relative effective
viscosity increases nonlinearly with �, as observed also for a similar system with neutral wetting
boundaries for the droplets [54]. A number of expressions for the effective viscosity of an emulsion
as a function of the volume fraction are available in the literature [57,58]. Based on the differential
effective medium theory, Bullard et al. [58] proposed the following model:

μr = (1 − K�)−[η]/K, (20)

where the factor K is set to be 1.0, and [η] represents the intrinsic viscosity. For the present system
with slightly deformable droplets (see Fig. 11), the intrinsic viscosity [η] is confined between the
undeformable limit of Taylor [59] [η]T = (1/M+[η]∞)/(1/M+1) and the freely deformable limit
of Douglas et al. [60] [η]D= (1 − 1/M )/[(1 − 1/M )/[η]∞+1/M], where [η]∞ = 2.5. In Fig. 12,
we show a very good fit by Eq. (20) with [η] = 0.88.

We now proceed to investigate the effect of body force by exploring a range of nondimensional
body forces 7 � Fb � 73. Figure 13 plots μr as a function of Fb at different volume fractions.
From Fig. 13 we can see that μr is almost independent of the forcing in the parameter range we
considered, as expected for a Newtonian fluid. For the highest volume fraction tested, � = 0.64,
instead, a slight decrease of μr with the increasing forcing can be appreciated, hinting at a moderate
shear thinning behavior, as expected for this kind of systems.

We address now the effect of the viscosity ratio M = μB/μA on the rheology of the emulsion. We
stress here incidentally that the capability of simulating viscosity ratios other than one extends the
applicability of our method to study the physics of more general soft flowing systems. In this sense,
the limit M → 0 is that of solid suspensions, while M � 1 would correspond to foams. In Fig. 14
we plot the relative effective viscosity μr as a function of the viscosity ratio M . We can see an
asymmetric effect of M: for M > 1, μr is approximately independent of M , while for M < 1, μr

increases with the decrease of M , and this effect is more significant at larger volume fractions. As
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FIG. 14. Relative effective viscosity μr as a function of viscosity ratio M = μB/μA at different volume
fractions � and F̄b = 37. The left branch of the figure, M < 1, corresponds to more viscous, hence less
deformable, droplets (M → 0 is the solid sphere limit), while in the right branch M > 1 they are less viscous
than the matrix, and correspondingly more deformable (M � 1 is the bubble case). This figure can be also
seen then as the effective viscosity of a suspension of soft deformable particles, as a function of their stiffness.
Inset: Plot of μr versus � for M = 1/10, 1/6, and 1/3.

shown in the inset, we also find good fits by Eq. (20) for M = 1/10, 1/6, 1/3, where the intrinsic
viscosity [η] in each fitting line is confined between [η]T and [η]D for the specified condition.

IV. CONCLUSIONS

A mesoscopic numerical method for the simulation of soft flowing systems based on a two-range
pseudopotential lattice Boltzmann construction has been proposed. Our method is remarkable as it
features adjustable surface tension, positive disjoining pressure, tunable viscosity ratio, and fully
resolved hydrodynamics, unlike, to our knowledge, any other existing alternative methods (such as
boundary integral methods [61] or “bubble models” [62]). In contrast to the previous literature, the
present model removes the viscosity dependence in the original two-range pseudopotential LBM,
thus opening the way to the simulation of multicomponent fluids with nonunit viscosity ratios
and a viscosity-independent disjoining pressure. Such a capability is demonstrated by computing
the relative effective viscosity of a pressure-driven emulsion in a planar flow as a function of the
viscosity ratio between the disperse and continuum phases.

It is hoped that the present upgrade will permit us to extend the range of applications of the LBM
for complex soft flowing systems.
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FIG. 15. Maximum spurious currents us measured from a steady droplet in a continuous matrix at different
viscosity ratios M and strength coefficients GA,1.

APPENDIX: SPURIOUS CURRENTS

It is known that the diffusive interface models lead to spurious velocity currents around interfaces
due to the numerical imbalances of various discretized forces. The maximum spurious currents, us ,
produced for a steady droplet (R = 20�x) under different conditions are shown in Fig. 15. The
parameters used in the simulations are the same as those in Sec. III D. As can be seen, the maximum
spurious current is relatively small for viscosity ratio M > 1/10 (the range considered in Sec. III D),
while it increases gradually when M is further decreased. For a given viscosity ratio, us is reduced
when the strength coefficient GA,1 is increased, which corresponds to smaller disjoining pressure
(see Fig. 7). For the time being, we mainly focus on the removal of the viscosity dependence in
the original two-range model, while strategies or parameter optimization methods [10,55,63,64] for
reducing the spurious currents can be adopted for future applications with quite small (or quite
large) viscosity ratios.
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