4 research outputs found

    Towards a Physarum learning chip

    Get PDF
    Networks of protoplasmic tubes of organism Physarum polycehpalum are macro-scale structures which optimally span multiple food sources to avoid repellents yet maximize coverage of attractants. When data are presented by configurations of attractants and behaviour of the slime mould is tuned by a range of repellents, the organism preforms computation. It maps given data configuration into a protoplasmic network. To discover physical means of programming the slime mould computers we explore conductivity of the protoplasmic tubes; proposing that the network connectivity of protoplasmic tubes shows pathway-dependent plasticity. To demonstrate this we encourage the slime mould to span a grid of electrodes and apply AC stimuli to the network. Learning and weighted connections within a grid of electrodes is produced using negative and positive voltage stimulation of the network at desired nodes; low frequency (10 Hz) sinusoidal (0.5 V peak-to-peak) voltage increases connectivity between stimulated electrodes while decreasing connectivity elsewhere, high frequency (1000 Hz) sinusoidal (2.5 V peak-to-peak) voltage stimulation decreases network connectivity between stimulated electrodes. We corroborate in a particle model. This phenomenon may be used for computation in the same way that neural networks process information and has the potential to shed light on the dynamics of learning and information processing in non-neural metazoan somatic cell networks

    On the internalisation, intraplasmodial carriage and excretion of metallic nanoparticles in the slime mould, Physarum polycephalum

    No full text
    The plasmodium of Physarum polycephalum is a large single cell visible with the naked eye. When inoculated on a substrate with attractants and repellents the plasmodium develops optimal networks of protoplasmic tubes which span sites of attractants (i.e. nutrients) yet avoid domains with a high nutrient concentration. It should therefore be possible to program the plasmodium towards deterministic adaptive transformation of internalised nano- and micro-scale materials. In laboratory experiments with magnetite nanoparticles and glass micro spheres coated with silver metal the authors demonstrate that the plasmodium of P. polycephalum can propagate the nano-scale objects using a number of distinct mechanisms including endocytosis, transcytosis and dragging. The results of the authors’ experiments could be used in the development of novel techniques targeted towards the growth of metallised biological wires and hybrid nano- and micro-circuits
    corecore