640 research outputs found

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table

    Information Exchange rather than Topology Awareness: Cooperation between P2P Overlay and Traffic Engineering

    Get PDF
    Solutions to the routing strategic conflict between noncooperative P2P overlay and ISP underlay go separate ways: hyperselfishness and cooperation. Unpredictable (possibly adverse) impact of the hyperselfish topology awareness, which is adopted in both overlay routing and traffic engineering, has not been sufficiently studied in the literature. Topology-related information exchange in a cooperatively efficient way should be highlighted to alleviate the cross-layer conflict. In this paper, we first illustrate the hyperselfish weakness with two dynamic noncooperative game models in which hyperselfish overlay or underlay has to accept a suboptimal profit. Then we build a synergistic cost-saving (SC) game model to reduce the negative effects of noncooperation. In the SC model, through information exchange, that is, the classified path-delay metrics for P2P overlay and peer locations for underlay, P2P overlay selects proximity as well as saving traffic transit cost for underlay, and ISP underlay adjusts routing to optimize network cost as well as indicating short delay paths for P2P. Simulations based on the real and generated topologies validate cost improvement by SC model and find a proper remote threshold value to limit P2P traffic from remote area, cross-AS, or cross-ISP

    Segment Routing: a Comprehensive Survey of Research Activities, Standardization Efforts and Implementation Results

    Full text link
    Fixed and mobile telecom operators, enterprise network operators and cloud providers strive to face the challenging demands coming from the evolution of IP networks (e.g. huge bandwidth requirements, integration of billions of devices and millions of services in the cloud). Proposed in the early 2010s, Segment Routing (SR) architecture helps face these challenging demands, and it is currently being adopted and deployed. SR architecture is based on the concept of source routing and has interesting scalability properties, as it dramatically reduces the amount of state information to be configured in the core nodes to support complex services. SR architecture was first implemented with the MPLS dataplane and then, quite recently, with the IPv6 dataplane (SRv6). IPv6 SR architecture (SRv6) has been extended from the simple steering of packets across nodes to a general network programming approach, making it very suitable for use cases such as Service Function Chaining and Network Function Virtualization. In this paper we present a tutorial and a comprehensive survey on SR technology, analyzing standardization efforts, patents, research activities and implementation results. We start with an introduction on the motivations for Segment Routing and an overview of its evolution and standardization. Then, we provide a tutorial on Segment Routing technology, with a focus on the novel SRv6 solution. We discuss the standardization efforts and the patents providing details on the most important documents and mentioning other ongoing activities. We then thoroughly analyze research activities according to a taxonomy. We have identified 8 main categories during our analysis of the current state of play: Monitoring, Traffic Engineering, Failure Recovery, Centrally Controlled Architectures, Path Encoding, Network Programming, Performance Evaluation and Miscellaneous...Comment: SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIAL

    Shortcuts through Colocation Facilities

    Full text link
    Network overlays, running on top of the existing Internet substrate, are of perennial value to Internet end-users in the context of, e.g., real-time applications. Such overlays can employ traffic relays to yield path latencies lower than the direct paths, a phenomenon known as Triangle Inequality Violation (TIV). Past studies identify the opportunities of reducing latency using TIVs. However, they do not investigate the gains of strategically selecting relays in Colocation Facilities (Colos). In this work, we answer the following questions: (i) how Colo-hosted relays compare with other relays as well as with the direct Internet, in terms of latency (RTT) reductions; (ii) what are the best locations for placing the relays to yield these reductions. To this end, we conduct a large-scale one-month measurement of inter-domain paths between RIPE Atlas (RA) nodes as endpoints, located at eyeball networks. We employ as relays Planetlab nodes, other RA nodes, and machines in Colos. We examine the RTTs of the overlay paths obtained via the selected relays, as well as the direct paths. We find that Colo-based relays perform the best and can achieve latency reductions against direct paths, ranging from a few to 100s of milliseconds, in 76% of the total cases; 75% (58% of total cases) of these reductions require only 10 relays in 6 large Colos.Comment: In Proceedings of the ACM Internet Measurement Conference (IMC '17), London, GB, 201

    Patterns and Interactions in Network Security

    Full text link
    Networks play a central role in cyber-security: networks deliver security attacks, suffer from them, defend against them, and sometimes even cause them. This article is a concise tutorial on the large subject of networks and security, written for all those interested in networking, whether their specialty is security or not. To achieve this goal, we derive our focus and organization from two perspectives. The first perspective is that, although mechanisms for network security are extremely diverse, they are all instances of a few patterns. Consequently, after a pragmatic classification of security attacks, the main sections of the tutorial cover the four patterns for providing network security, of which the familiar three are cryptographic protocols, packet filtering, and dynamic resource allocation. Although cryptographic protocols hide the data contents of packets, they cannot hide packet headers. When users need to hide packet headers from adversaries, which may include the network from which they are receiving service, they must resort to the pattern of compound sessions and overlays. The second perspective comes from the observation that security mechanisms interact in important ways, with each other and with other aspects of networking, so each pattern includes a discussion of its interactions.Comment: 63 pages, 28 figures, 56 reference

    Overlay networks for smart grids

    Get PDF
    • …
    corecore