6 research outputs found

    A Federated Filtering Framework for Internet of Medical Things

    Full text link
    Based on the dominant paradigm, all the wearable IoT devices used in the healthcare sector also known as the internet of medical things (IoMT) are resource constrained in power and computational capabilities. The IoMT devices are continuously pushing their readings to the remote cloud servers for real-time data analytics, that causes faster drainage of the device battery. Moreover, other demerits of continuous centralizing of data include exposed privacy and high latency. This paper presents a novel Federated Filtering Framework for IoMT devices which is based on the prediction of data at the central fog server using shared models provided by the local IoMT devices. The fog server performs model averaging to predict the aggregated data matrix and also computes filter parameters for local IoMT devices. Two significant theoretical contributions of this paper are the global tolerable perturbation error (TolF{To{l_F}}) and the local filtering parameter (δ\delta); where the former controls the decision-making accuracy due to eigenvalue perturbation and the later balances the tradeoff between the communication overhead and perturbation error of the aggregated data matrix (predicted matrix) at the fog server. Experimental evaluation based on real healthcare data demonstrates that the proposed scheme saves upto 95\% of the communication cost while maintaining reasonable data privacy and low latency.Comment: 6 pages, 6 Figures, accepted for oral presentation in IEEE ICC 2019, Internet of Things, Federated Learning and Perturbation theor

    TG-SPRED: Temporal graph for sensorial data PREDiction

    Get PDF
    This study introduces an innovative method aimed at reducing energy consumption in sensor networks by predicting sensor data, thereby extending the network’s operational lifespan. Our model, TG-SPRED (Temporal Graph Sensor Prediction), predicts readings for a subset of sensors designated to enter sleep mode in each time slot, based on a non-scheduling-dependent approach. This flexibility allows for extended sensor inactivity periods without compromising data accuracy. TG-SPRED addresses the complexities of event-based sensing—a domain that has been somewhat overlooked in existing literature—by recognizing and leveraging the inherent temporal and spatial correlations among events. It combines the strengths of Gated Recurrent Units (GRUs) and Graph Convolutional Networks (GCN) to analyze temporal data and spatial relationships within the sensor network graph, where connections are defined by sensor proximities. An adversarial training mechanism, featuring a critic network employing the Wasserstein distance for performance measurement, further refines the predictive accuracy. Comparative analysis against six leading solutions using four critical metrics—F-score, energy consumption, network lifetime, and computational efficiency—showcases our approach’s superior performance in both accuracy and energy efficiency
    corecore