5,134 research outputs found

    Coding Theory and Algebraic Combinatorics

    Full text link
    This chapter introduces and elaborates on the fruitful interplay of coding theory and algebraic combinatorics, with most of the focus on the interaction of codes with combinatorial designs, finite geometries, simple groups, sphere packings, kissing numbers, lattices, and association schemes. In particular, special interest is devoted to the relationship between codes and combinatorial designs. We describe and recapitulate important results in the development of the state of the art. In addition, we give illustrative examples and constructions, and highlight recent advances. Finally, we provide a collection of significant open problems and challenges concerning future research.Comment: 33 pages; handbook chapter, to appear in: "Selected Topics in Information and Coding Theory", ed. by I. Woungang et al., World Scientific, Singapore, 201

    Some new results on the self-dual [120,60,24] code

    Full text link
    The existence of an extremal self-dual binary linear code of length 120 is a long-standing open problem. We continue the investigation of its automorphism group, proving that automorphisms of order 30 and 57 cannot occur. Supposing the involutions acting fixed point freely, we show that also automorphisms of order 8 cannot occur and the automorphism group is of order at most 120, with further restrictions. Finally, we present some necessary conditions for the existence of the code, based on shadow and design theory.Comment: 23 pages, 6 tables, to appear in Finite Fields and Their Application

    Symmetries of weight enumerators and applications to Reed-Muller codes

    Get PDF
    Gleason's 1970 theorem on weight enumerators of self-dual codes has played a crucial role for research in coding theory during the last four decades. Plenty of generalizations have been proved but, to our knowledge, they are all based on the symmetries given by MacWilliams' identities. This paper is intended to be a first step towards a more general investigation of symmetries of weight enumerators. We list the possible groups of symmetries, dealing both with the finite and infinite case, we develop a new algorithm to compute the group of symmetries of a given weight enumerator and apply these methods to the family of Reed-Muller codes, giving, in the binary case, an analogue of Gleason's theorem for all parameters.Comment: 14 pages. Improved and extended version of arXiv:1511.00803. To appear in Advances in Mathematics of Communication
    • …
    corecore