32,801 research outputs found

    Finite-time Convergent Gossiping

    Full text link
    Gossip algorithms are widely used in modern distributed systems, with applications ranging from sensor networks and peer-to-peer networks to mobile vehicle networks and social networks. A tremendous research effort has been devoted to analyzing and improving the asymptotic rate of convergence for gossip algorithms. In this work we study finite-time convergence of deterministic gossiping. We show that there exists a symmetric gossip algorithm that converges in finite time if and only if the number of network nodes is a power of two, while there always exists an asymmetric gossip algorithm with finite-time convergence, independent of the number of nodes. For n=2mn=2^m nodes, we prove that a fastest convergence can be reached in nm=nlog2nnm=n\log_2 n node updates via symmetric gossiping. On the other hand, under asymmetric gossip among n=2m+rn=2^m+r nodes with 0r<2m0\leq r<2^m, it takes at least mn+2rmn+2r node updates for achieving finite-time convergence. It is also shown that the existence of finite-time convergent gossiping often imposes strong structural requirements on the underlying interaction graph. Finally, we apply our results to gossip algorithms in quantum networks, where the goal is to control the state of a quantum system via pairwise interactions. We show that finite-time convergence is never possible for such systems.Comment: IEEE/ACM Transactions on Networking, In Pres

    Limit points of the monotonic schemes

    Full text link
    Many numerical simulations in quantum (bilinear) control use the monotonically convergent algorithms of Krotov (introduced by Tannor), Zhu & Rabitz or the general form of Maday & Turinici. This paper presents an analysis of the limit set of controls provided by these algorithms and a proof of convergence in a particular case.Comment: 5 pages, 0 figure, 44th IEEE conference on Decision and Control Sevilla december 200

    An Algorithmic Framework for Strategic Fair Division

    Full text link
    We study the paradigmatic fair division problem of allocating a divisible good among agents with heterogeneous preferences, commonly known as cake cutting. Classical cake cutting protocols are susceptible to manipulation. Do their strategic outcomes still guarantee fairness? To address this question we adopt a novel algorithmic approach, by designing a concrete computational framework for fair division---the class of Generalized Cut and Choose (GCC) protocols}---and reasoning about the game-theoretic properties of algorithms that operate in this model. The class of GCC protocols includes the most important discrete cake cutting protocols, and turns out to be compatible with the study of fair division among strategic agents. In particular, GCC protocols are guaranteed to have approximate subgame perfect Nash equilibria, or even exact equilibria if the protocol's tie-breaking rule is flexible. We further observe that the (approximate) equilibria of proportional GCC protocols---which guarantee each of the nn agents a 1/n1/n-fraction of the cake---must be (approximately) proportional. Finally, we design a protocol in this framework with the property that its Nash equilibrium allocations coincide with the set of (contiguous) envy-free allocations
    corecore