413 research outputs found

    Convex Relaxation of Optimal Power Flow, Part II: Exactness

    Get PDF
    This tutorial summarizes recent advances in the convex relaxation of the optimal power flow (OPF) problem, focusing on structural properties rather than algorithms. Part I presents two power flow models, formulates OPF and their relaxations in each model, and proves equivalence relations among them. Part II presents sufficient conditions under which the convex relaxations are exact.Comment: Citation: IEEE Transactions on Control of Network Systems, June 2014. This is an extended version with Appendex VI that proves the main results in this tutoria

    Optimal Power Flow in Stand-alone DC Microgrids

    Get PDF
    Direct-current microgrids (DC-MGs) can operate in either grid-connected or stand-alone mode. In particular, stand-alone DC-MG has many distinct applications. However, the optimal power flow problem of a stand-alone DC-MG is inherently non-convex. In this paper, the optimal power flow (OPF) problem of DC-MG is investigated considering convex relaxation based on second-order cone programming (SOCP). Mild assumptions are proposed to guarantee the exactness of relaxation, which only require uniform nodal voltage upper bounds and positive network loss. Furthermore, it is revealed that the exactness of SOCP relaxation of DC-MGs does not rely on either topology or operating mode of DC-MGs, and an optimal solution must be unique if it exists. If line constraints are considered, the exactness of SOCP relaxation may not hold. In this regard, two heuristic methods are proposed to give approximate solutions. Simulations are conducted to confirm the theoretic results

    Equivalent relaxations of optimal power flow

    Get PDF
    Several convex relaxations of the optimal power flow (OPF) problem have recently been developed using both bus injection models and branch flow models. In this paper, we prove relations among three convex relaxations: a semidefinite relaxation that computes a full matrix, a chordal relaxation based on a chordal extension of the network graph, and a second-order cone relaxation that computes the smallest partial matrix. We prove a bijection between the feasible sets of the OPF in the bus injection model and the branch flow model, establishing the equivalence of these two models and their second-order cone relaxations. Our results imply that, for radial networks, all these relaxations are equivalent and one should always solve the second-order cone relaxation. For mesh networks, the semidefinite relaxation is tighter than the second-order cone relaxation but requires a heavier computational effort, and the chordal relaxation strikes a good balance. Simulations are used to illustrate these results.Comment: 12 pages, 7 figure

    Exact Convex Relaxation of Optimal Power Flow in Tree Networks

    Get PDF
    The optimal power flow (OPF) problem seeks to control power generation/demand to optimize certain objectives such as minimizing the generation cost or power loss in the network. It is becoming increasingly important for distribution networks, which are tree networks, due to the emergence of distributed generation and controllable loads. In this paper, we study the OPF problem in tree networks. The OPF problem is nonconvex. We prove that after a "small" modification to the OPF problem, its global optimum can be recovered via a second-order cone programming (SOCP) relaxation, under a "mild" condition that can be checked apriori. Empirical studies justify that the modification to OPF is "small" and that the "mild" condition holds for the IEEE 13-bus distribution network and two real-world networks with high penetration of distributed generation.Comment: 22 pages, 7 figure

    Exact Convex Relaxation of Optimal Power Flow in Radial Networks

    Full text link
    The optimal power flow (OPF) problem determines power generation/demand that minimize a certain objective such as generation cost or power loss. It is nonconvex. We prove that, for radial networks, after shrinking its feasible set slightly, the global optimum of OPF can be recovered via a second-order cone programming (SOCP) relaxation under a condition that can be checked a priori. The condition holds for the IEEE 13-, 34-, 37-, 123-bus networks and two real-world networks, and has a physical interpretation.Comment: 32 pages, 10 figures, submitted to IEEE Transaction on Automatic Control. arXiv admin note: text overlap with arXiv:1208.407

    Graphical Models for Optimal Power Flow

    Get PDF
    Optimal power flow (OPF) is the central optimization problem in electric power grids. Although solved routinely in the course of power grid operations, it is known to be strongly NP-hard in general, and weakly NP-hard over tree networks. In this paper, we formulate the optimal power flow problem over tree networks as an inference problem over a tree-structured graphical model where the nodal variables are low-dimensional vectors. We adapt the standard dynamic programming algorithm for inference over a tree-structured graphical model to the OPF problem. Combining this with an interval discretization of the nodal variables, we develop an approximation algorithm for the OPF problem. Further, we use techniques from constraint programming (CP) to perform interval computations and adaptive bound propagation to obtain practically efficient algorithms. Compared to previous algorithms that solve OPF with optimality guarantees using convex relaxations, our approach is able to work for arbitrary distribution networks and handle mixed-integer optimization problems. Further, it can be implemented in a distributed message-passing fashion that is scalable and is suitable for "smart grid" applications like control of distributed energy resources. We evaluate our technique numerically on several benchmark networks and show that practical OPF problems can be solved effectively using this approach.Comment: To appear in Proceedings of the 22nd International Conference on Principles and Practice of Constraint Programming (CP 2016
    • …
    corecore