11,041 research outputs found

    Flexible and Low-Complexity Encoding and Decoding of Systematic Polar Codes

    Full text link
    In this work, we present hardware and software implementations of flexible polar systematic encoders and decoders. The proposed implementations operate on polar codes of any length less than a maximum and of any rate. We describe the low-complexity, highly parallel, and flexible systematic-encoding algorithm that we use and prove its correctness. Our hardware implementation results show that the overhead of adding code rate and length flexibility is little, and the impact on operation latency minor compared to code-specific versions. Finally, the flexible software encoder and decoder implementations are also shown to be able to maintain high throughput and low latency.Comment: Submitted to IEEE Transactions on Communications, 201

    Concatenated Polar Codes

    Get PDF
    Polar codes have attracted much recent attention as the first codes with low computational complexity that provably achieve optimal rate-regions for a large class of information-theoretic problems. One significant drawback, however, is that for current constructions the probability of error decays sub-exponentially in the block-length (more detailed designs improve the probability of error at the cost of significantly increased computational complexity \cite{KorUS09}). In this work we show how the the classical idea of code concatenation -- using "short" polar codes as inner codes and a "high-rate" Reed-Solomon code as the outer code -- results in substantially improved performance. In particular, code concatenation with a careful choice of parameters boosts the rate of decay of the probability of error to almost exponential in the block-length with essentially no loss in computational complexity. We demonstrate such performance improvements for three sets of information-theoretic problems -- a classical point-to-point channel coding problem, a class of multiple-input multiple output channel coding problems, and some network source coding problems

    A Novel Interleaving Scheme for Polar Codes

    Full text link
    It's known that the bit errors of polar codes with successive cancellation (SC) decoding are coupled. We call the coupled information bits the correlated bits. In this paper, concatenation schemes are studied for polar codes (as inner codes) and LDPC codes (as outer codes). In a conventional concatenation scheme, to achieve a better BER performance, one can divide all NlN_l bits in a LDPC block into NlN_l polar blocks to completely de-correlate the possible coupled errors. In this paper, we propose a novel interleaving scheme between a LDPC code and a polar code which breaks the correlation of the errors among the correlated bits. This interleaving scheme still keeps the simple SC decoding of polar codes while achieves a comparable BER performance at a much smaller delay compared with a NlN_l-block delay scheme

    Low-Complexity Puncturing and Shortening of Polar Codes

    Full text link
    In this work, we address the low-complexity construction of shortened and punctured polar codes from a unified view. While several independent puncturing and shortening designs were attempted in the literature, our goal is a unique, low-complexity construction encompassing both techniques in order to achieve any code length and rate. We observe that our solution significantly reduces the construction complexity as compared to state-of-the-art solutions while providing a block error rate performance comparable to constructions that are highly optimized for specific lengths and rates. This makes the constructed polar codes highly suitable for practical application in future communication systems requiring a large set of polar codes with different lengths and rates.Comment: to appear in WCNC 2017 - "Polar Coding in Wireless Communications: Theory and Implementation" Worksho
    • …
    corecore