8,742 research outputs found

    Robust Component-based Network Localization with Noisy Range Measurements

    Full text link
    Accurate and robust localization is crucial for wireless ad-hoc and sensor networks. Among the localization techniques, component-based methods advance themselves for conquering network sparseness and anchor sparseness. But component-based methods are sensitive to ranging noises, which may cause a huge accumulated error either in component realization or merging process. This paper presents three results for robust component-based localization under ranging noises. (1) For a rigid graph component, a novel method is proposed to evaluate the graph's possible number of flip ambiguities under noises. In particular, graph's \emph{MInimal sepaRators that are neaRly cOllineaR (MIRROR)} is presented as the cause of flip ambiguity, and the number of MIRRORs indicates the possible number of flip ambiguities under noise. (2) Then the sensitivity of a graph's local deforming regarding ranging noises is investigated by perturbation analysis. A novel Ranging Sensitivity Matrix (RSM) is proposed to estimate the node location perturbations due to ranging noises. (3) By evaluating component robustness via the flipping and the local deforming risks, a Robust Component Generation and Realization (RCGR) algorithm is developed, which generates components based on the robustness metrics. RCGR was evaluated by simulations, which showed much better noise resistance and locating accuracy improvements than state-of-the-art of component-based localization algorithms.Comment: 9 pages, 15 figures, ICCCN 2018, Hangzhou, Chin

    Development of active icosahedron and its application to virtual clay modeling

    Get PDF
    We have developed an active link mechanism for physical man-machine interaction. We report an active icosahedron consisting of intelligent cylinders and its application to virtual clay modeling. Intelligent pneumatic cylinders are newly developed to realize active link mechanisms. This cylinder aims at a novel cylinder in which various sensors and control devices are built. Active link mechanisms are highly integrated and enhanced by intelligent cylinders. A control system is built for the active icosahedron. In the control system, a key element is a control program implementing drawing of a virtual model on display and controlling of active links. Virtual clays are deformed by the program based on the apex positions converted from cylinder lengths. The active icosahedron realized dynamic interaction with virtual objects in PC, showing the potential of the devices as a haptic interface.</p

    A Global Plate Model Including Lithospheric Deformation Along Major Rifts and Orogens Since the Triassic

    Get PDF
    Global deep‐time plate motion models have traditionally followed a classical rigid plate approach, even though plate deformation is known to be significant. Here we present a global Mesozoic–Cenozoic deforming plate motion model that captures the progressive extension of all continental margins since the initiation of rifting within Pangea at ~240 Ma. The model also includes major failed continental rifts and compressional deformation along collision zones. The outlines and timing of regional deformation episodes are reconstructed from a wealth of published regional tectonic models and associated geological and geophysical data. We reconstruct absolute plate motions in a mantle reference frame with a joint global inversion using hot spot tracks for the last 80 million years and minimizing global trench migration velocities and net lithospheric rotation. In our optimized model, net rotation is consistently below 0.2°/Myr, and trench migration scatter is substantially reduced. Distributed plate deformation reaches a Mesozoic peak of 30 × 106 km2 in the Late Jurassic (~160–155 Ma), driven by a vast network of rift systems. After a mid‐Cretaceous drop in deformation, it reaches a high of 48 x 106 km2 in the Late Eocene (~35 Ma), driven by the progressive growth of plate collisions and the formation of new rift systems. About a third of the continental crustal area has been deformed since 240 Ma, partitioned roughly into 65% extension and 35% compression. This community plate model provides a framework for building detailed regional deforming plate networks and form a constraint for models of basin evolution and the plate‐mantle system

    Mirror symmetry for Del Pezzo surfaces: Vanishing cycles and coherent sheaves

    Full text link
    We study homological mirror symmetry for Del Pezzo surfaces and their mirror Landau-Ginzburg models. In particular, we show that the derived category of coherent sheaves on a Del Pezzo surface X_k obtained by blowing up CP^2 at k points is equivalent to the derived category of vanishing cycles of a certain elliptic fibration W_k:M_k\to\C with k+3 singular fibers, equipped with a suitable symplectic form. Moreover, we also show that this mirror correspondence between derived categories can be extended to noncommutative deformations of X_k, and give an explicit correspondence between the deformation parameters for X_k and the cohomology class [B+i\omega]\in H^2(M_k,C).Comment: 40 pages, 9 figure

    Efficient collective swimming by harnessing vortices through deep reinforcement learning

    Full text link
    Fish in schooling formations navigate complex flow-fields replete with mechanical energy in the vortex wakes of their companions. Their schooling behaviour has been associated with evolutionary advantages including collective energy savings. How fish harvest energy from their complex fluid environment and the underlying physical mechanisms governing energy-extraction during collective swimming, is still unknown. Here we show that fish can improve their sustained propulsive efficiency by actively following, and judiciously intercepting, vortices in the wake of other swimmers. This swimming strategy leads to collective energy-savings and is revealed through the first ever combination of deep reinforcement learning with high-fidelity flow simulations. We find that a `smart-swimmer' can adapt its position and body deformation to synchronise with the momentum of the oncoming vortices, improving its average swimming-efficiency at no cost to the leader. The results show that fish may harvest energy deposited in vortices produced by their peers, and support the conjecture that swimming in formation is energetically advantageous. Moreover, this study demonstrates that deep reinforcement learning can produce navigation algorithms for complex flow-fields, with promising implications for energy savings in autonomous robotic swarms.Comment: 26 pages, 14 figure

    Inertial particle acceleration in strained turbulence

    Full text link
    The dynamics of inertial particles in turbulence is modelled and investigated by means of direct numerical simulation of an axisymmetrically expanding homogeneous turbulent strained flow. This flow can mimic the dynamics of particles close to stagnation points. The influence of mean straining flow is explored by varying the dimensionless strain rate parameter Sk0/ϵ0Sk_0/\epsilon_0 from 0.2 to 20. We report results relative to the acceleration variances and probability density functions for both passive and inertial particles. A high mean strain is found to have a significant effect on the acceleration variance both directly, through an increase in wave number magnitude, and indirectly, through the coupling of the fluctuating velocity and the mean flow field. The influence of the strain on normalized particle acceleration pdfs is more subtle. For the case of passive particle we can approximate the acceleration variance with the aid of rapid distortion theory and obtain good agreement with simulation data. For the case of inertial particles we can write a formal expressions for the accelerations. The magnitude changes in the inertial particle acceleration variance and the effect on the probability density function are then discussed in a wider context for comparable flows, where the effects of the mean flow geometry and of the anisotropy at the small scales are present

    Integration over connections in the discretized gravitational functional integrals

    Full text link
    The result of performing integrations over connection type variables in the path integral for the discrete field theory may be poorly defined in the case of non-compact gauge group with the Haar measure exponentially growing in some directions. This point is studied in the case of the discrete form of the first order formulation of the Einstein gravity theory. Here the result of interest can be defined as generalized function (of the rest of variables of the type of tetrad or elementary areas) i. e. a functional on a set of probe functions. To define this functional, we calculate its values on the products of components of the area tensors, the so-called moments. The resulting distribution (in fact, probability distribution) has singular (δ\delta-function-like) part with support in the nonphysical region of the complex plane of area tensors and regular part (usual function) which decays exponentially at large areas. As we discuss, this also provides suppression of large edge lengths which is important for internal consistency, if one asks whether gravity on short distances can be discrete. Some another features of the obtained probability distribution including occurrence of the local maxima at a number of the approximately equidistant values of area are also considered.Comment: 22 page

    Defining integrals over connections in the discretized gravitational functional integral

    Full text link
    Integration over connection type variables in the path integral for the discrete form of the first order formulation of general relativity theory is studied. The result (a generalized function of the rest of variables of the type of tetrad or elementary areas) can be defined through its moments, i. e. integrals of it with the area tensor monomials. In our previous paper these moments have been defined by deforming integration contours in the complex plane as if we had passed to an Euclidean-like region. In the present paper we define and evaluate the moments in the genuine Minkowsky region. The distribution of interest resulting from these moments in this non-positively defined region contains the divergences. We prove that the latter contribute only to the singular (\dfun like) part of this distribution with support in the non-physical region of the complex plane of area tensors while in the physical region this distribution (usual function) confirms that defined in our previous paper which decays exponentially at large areas. Besides that, we evaluate the basic integrals over which the integral over connections in the general path integral can be expanded.Comment: 18 page
    corecore