10 research outputs found

    On the Development of the Intersection of a Plane With a Polytope

    Get PDF
    Define a “slice” curve as the intersection of a plane with the surface of a polytope, i.e., a convex polyhedron in three dimensions. We prove that a slice curve develops on a plane without self-intersection. The key tool used is a generalization of Cauchy\u27s arm lemma to permit nonconvex “openings” of a planar convex chain

    Conical Existence of Closed Curves on Convex Polyhedra

    Get PDF
    Let C be a simple, closed, directed curve on the surface of a convex polyhedron P. We identify several classes of curves C that "live on a cone," in the sense that C and a neighborhood to one side may be isometrically embedded on the surface of a cone Lambda, with the apex a of Lambda enclosed inside (the image of) C; we also prove that each point of C is "visible to" a. In particular, we obtain that these curves have non-self-intersecting developments in the plane. Moreover, the curves we identify that live on cones to both sides support a new type of "source unfolding" of the entire surface of P to one non-overlapping piece, as reported in a companion paper.Comment: 24 pages, 15 figures, 6 references. Version 2 includes a solution to one of the open problems posed in Version 1, concerning quasigeodesic loop

    Unfolding Restricted Convex Caps

    Get PDF
    This paper details an algorithm for unfolding a class of convex polyhedra, where each polyhedron in the class consists of a convex cap over a rectangular base, with several restrictions: the cap’s faces are quadrilaterals, with vertices over an underlying integer lattice, and such that the cap convexity is radially monotone, a type of smoothness constraint. Extensions of Cauchy’s arm lemma are used in the proof of non-overlap

    Curves of Finite Total Curvature

    Full text link
    We consider the class of curves of finite total curvature, as introduced by Milnor. This is a natural class for variational problems and geometric knot theory, and since it includes both smooth and polygonal curves, its study shows us connections between discrete and differential geometry. To explore these ideas, we consider theorems of Fary/Milnor, Schur, Chakerian and Wienholtz.Comment: 25 pages, 4 figures; final version, to appear in "Discrete Differential Geometry", Oberwolfach Seminars 38, Birkhauser, 200

    Master index of Volumes 21–30

    Get PDF

    Reshaping Convex Polyhedra

    Full text link
    Given a convex polyhedral surface P, we define a tailoring as excising from P a simple polygonal domain that contains one vertex v, and whose boundary can be sutured closed to a new convex polyhedron via Alexandrov's Gluing Theorem. In particular, a digon-tailoring cuts off from P a digon containing v, a subset of P bounded by two equal-length geodesic segments that share endpoints, and can then zip closed. In the first part of this monograph, we primarily study properties of the tailoring operation on convex polyhedra. We show that P can be reshaped to any polyhedral convex surface Q a subset of conv(P) by a sequence of tailorings. This investigation uncovered previously unexplored topics, including a notion of unfolding of Q onto P--cutting up Q into pieces pasted non-overlapping onto P. In the second part of this monograph, we study vertex-merging processes on convex polyhedra (each vertex-merge being in a sense the reverse of a digon-tailoring), creating embeddings of P into enlarged surfaces. We aim to produce non-overlapping polyhedral and planar unfoldings, which led us to develop an apparently new theory of convex sets, and of minimal length enclosing polygons, on convex polyhedra. All our theorem proofs are constructive, implying polynomial-time algorithms.Comment: Research monograph. 234 pages, 105 figures, 55 references. arXiv admin note: text overlap with arXiv:2008.0175

    Large bichromatic point sets admit empty monochromatic 4-gons

    No full text
    We consider a variation of a problem stated by Erd˝os and Szekeres in 1935 about the existence of a number fES(k) such that any set S of at least fES(k) points in general position in the plane has a subset of k points that are the vertices of a convex k-gon. In our setting the points of S are colored, and we say that a (not necessarily convex) spanned polygon is monochromatic if all its vertices have the same color. Moreover, a polygon is called empty if it does not contain any points of S in its interior. We show that any bichromatic set of n ≥ 5044 points in R2 in general position determines at least one empty, monochromatic quadrilateral (and thus linearly many).Postprint (published version
    corecore