10,278 research outputs found

    An Alternating Trust Region Algorithm for Distributed Linearly Constrained Nonlinear Programs, Application to the AC Optimal Power Flow

    Get PDF
    A novel trust region method for solving linearly constrained nonlinear programs is presented. The proposed technique is amenable to a distributed implementation, as its salient ingredient is an alternating projected gradient sweep in place of the Cauchy point computation. It is proven that the algorithm yields a sequence that globally converges to a critical point. As a result of some changes to the standard trust region method, namely a proximal regularisation of the trust region subproblem, it is shown that the local convergence rate is linear with an arbitrarily small ratio. Thus, convergence is locally almost superlinear, under standard regularity assumptions. The proposed method is successfully applied to compute local solutions to alternating current optimal power flow problems in transmission and distribution networks. Moreover, the new mechanism for computing a Cauchy point compares favourably against the standard projected search as for its activity detection properties

    Numerical Analysis

    Get PDF
    Acknowledgements: This article will appear in the forthcoming Princeton Companion to Mathematics, edited by Timothy Gowers with June Barrow-Green, to be published by Princeton University Press.\ud \ud In preparing this essay I have benefitted from the advice of many colleagues who corrected a number of errors of fact and emphasis. I have not always followed their advice, however, preferring as one friend put it, to "put my head above the parapet". So I must take full responsibility for errors and omissions here.\ud \ud With thanks to: Aurelio Arranz, Alexander Barnett, Carl de Boor, David Bindel, Jean-Marc Blanc, Mike Bochev, Folkmar Bornemann, Richard Brent, Martin Campbell-Kelly, Sam Clark, Tim Davis, Iain Duff, Stan Eisenstat, Don Estep, Janice Giudice, Gene Golub, Nick Gould, Tim Gowers, Anne Greenbaum, Leslie Greengard, Martin Gutknecht, Raphael Hauser, Des Higham, Nick Higham, Ilse Ipsen, Arieh Iserles, David Kincaid, Louis Komzsik, David Knezevic, Dirk Laurie, Randy LeVeque, Bill Morton, John C Nash, Michael Overton, Yoshio Oyanagi, Beresford Parlett, Linda Petzold, Bill Phillips, Mike Powell, Alex Prideaux, Siegfried Rump, Thomas Schmelzer, Thomas Sonar, Hans Stetter, Gil Strang, Endre SĂĽli, Defeng Sun, Mike Sussman, Daniel Szyld, Garry Tee, Dmitry Vasilyev, Andy Wathen, Margaret Wright and Steve Wright

    Bundle-based pruning in the max-plus curse of dimensionality free method

    Full text link
    Recently a new class of techniques termed the max-plus curse of dimensionality-free methods have been developed to solve nonlinear optimal control problems. In these methods the discretization in state space is avoided by using a max-plus basis expansion of the value function. This requires storing only the coefficients of the basis functions used for representation. However, the number of basis functions grows exponentially with respect to the number of time steps of propagation to the time horizon of the control problem. This so called "curse of complexity" can be managed by applying a pruning procedure which selects the subset of basis functions that contribute most to the approximation of the value function. The pruning procedures described thus far in the literature rely on the solution of a sequence of high dimensional optimization problems which can become computationally expensive. In this paper we show that if the max-plus basis functions are linear and the region of interest in state space is convex, the pruning problem can be efficiently solved by the bundle method. This approach combining the bundle method and semidefinite formulations is applied to the quantum gate synthesis problem, in which the state space is the special unitary group (which is non-convex). This is based on the observation that the convexification of the unitary group leads to an exact relaxation. The results are studied and validated via examples

    Sequential Convex Programming Methods for Solving Nonlinear Optimization Problems with DC constraints

    Full text link
    This paper investigates the relation between sequential convex programming (SCP) as, e.g., defined in [24] and DC (difference of two convex functions) programming. We first present an SCP algorithm for solving nonlinear optimization problems with DC constraints and prove its convergence. Then we combine the proposed algorithm with a relaxation technique to handle inconsistent linearizations. Numerical tests are performed to investigate the behaviour of the class of algorithms.Comment: 18 pages, 1 figur

    A decomposition procedure based on approximate newton directions

    Get PDF
    The efficient solution of large-scale linear and nonlinear optimization problems may require exploiting any special structure in them in an efficient manner. We describe and analyze some cases in which this special structure can be used with very little cost to obtain search directions from decomposed subproblems. We also study how to correct these directions using (decomposable) preconditioned conjugate gradient methods to ensure local convergence in all cases. The choice of appropriate preconditioners results in a natural manner from the structure in the problem. Finally, we conduct computational experiments to compare the resulting procedures with direct methods, as well as to study the impact of different preconditioner choices

    Large Scale Computational Problems in Numerical Optimization

    Get PDF
    Our work under this support broadly falls into five categories: automatic differentiation, sparsity, constraints, parallel computation, and applications. Automatic Differentiation (AD): We developed strong practical methods for computing sparse Jacobian and Hessian matrices which arise frequently in large scale optimization problems [10,35]. In addition, we developed a novel view of "structure" in applied problems along with AD techniques that allowed for the efficient application of sparse AD techniques to dense, but structured, problems. Our AD work included development of freely available MATLAB AD software. Sparsity: We developed new effective and practical techniques for exploiting sparsity when solving a variety of optimization problems. These problems include: bound constrained problems, robust regression problems, the null space problem, and sparse orthogonal factorization. Our sparsity work included development of freely available and published software [38,39]. Constraints: Effectively handling constraints in large scale optimization remains a challenge. We developed a number of new approaches to constrained problems with emphasis on trust region methodologies. Parallel Computation: Our work included the development of specifically parallel techniques for the linear algebra tasks underpinning optimization algorithms. Our work contributed to the nonlinear least-squares problem, nonlinear equations, triangular systems, orthogonalization, and linear programming. Applications: Our optimization work is broadly applicable across numerous application domains. Nevertheless we have specifically worked in several application areas including molecular conformation, molecular energy minimization, computational finance, and bone remodeling
    • …
    corecore