53 research outputs found

    Entrainment Ranges for Chains of Forced Neural and Phase Oscillators

    Get PDF

    Intersegmental Coordination of Cockroach Locomotion: Adaptive Control of Centrally Coupled Pattern Generator Circuits

    Get PDF
    Animals’ ability to demonstrate both stereotyped and adaptive locomotor behavior is largely dependent on the interplay between centrally generated motor patterns and the sensory inputs that shape them. We utilized a combined experimental and theoretical approach to investigate the relative importance of CPG interconnections vs. intersegmental afferents in the cockroach: an animal that is renowned for rapid and stable locomotion. We simultaneously recorded coxal levator and depressor motor neurons (MN) in the thoracic ganglia of Periplaneta americana, while sensory feedback was completely blocked or allowed only from one intact stepping leg. In the absence of sensory feedback, we observed a coordination pattern with consistent phase relationship that shares similarities with a double-tripod gait, suggesting central, feedforward control. This intersegmental coordination pattern was then reinforced in the presence of sensory feedback from a single stepping leg. Specifically, we report on transient stabilization of phase differences between activity recorded in the middle and hind thoracic MN following individual front-leg steps, suggesting a role for afferent phasic information in the coordination of motor circuits at the different hemiganglia. Data were further analyzed using stochastic models of coupled oscillators and maximum likelihood techniques to estimate underlying physiological parameters, such as uncoupled endogenous frequencies of hemisegmental oscillators and coupling strengths and directions. We found that descending ipsilateral coupling is stronger than ascending coupling, while left–right coupling in both the meso- and meta-thoracic ganglia appear to be symmetrical. We discuss these results in comparison with recent findings in stick insects that share similar neural and body architectures, and argue that the two species may exemplify opposite extremes of a fast–slow locomotion continuum, mediated through different intersegment coordination strategies

    A víz alatti mozgás mechanikája és idegi szabályozása = Mechanics and neural control of aquatic locomotion

    Get PDF
    A kutatómunka során víz közegben történő mozgás szabályzásának mechanikai és idegtudományi kérdéseivel foglalkoztam, beleértve egyes egyedek, illetve állatcsoportok mozgásának vizsgálatát. A legprimitívebb felépítésű gerinces állatcsoport (az ingolák) vizsgálata során kimutattuk, hogy a mozgást vezérlő idegi hálózat kísérleti adatok alapján felépített modelljei hibásak, és ezért nem egyezik meg viselkedésük a valódi állatokéval. A számítógépes modellek komplexitását redukálva analitikus eszközökkel egy új, a korábbiaknál jobb viselkedést mutató mozgásvezérlő mechanizmusra tettem javaslatot. Az összehangolt csoportos mozgás kérdéskörében is a legegyszerűbb hatékony szabályozási mechanizmus azonosítására törekedtem. Kimutattam, hogy kétdimenziós térben mozgó koherens állatcsoportok viszonylag kis egyedszám esetén képesek spontán ütközések útján hatékonyan ’kommunikálni’, míg nagy egyedszám esetén a mechanikai kölcsönhatások fontosak, de önmagukban nem elég hatékonyak. | The mechanical and neural aspects of aquatic locomotion have been investigated on the level of individual agents as well as of coherent groups of individuals. We focused on central pattern generators of lampreys – a group of primitive vertebrates – and found that computational models of these networks of neurons fail to capture the behavior and the underlying mechanism of the real system. By reducing the complexity of existing models and by the use of analytic techniques a new mechanism of better performance has been proposed. Another focus of the research was the coherent motion of groups, where we again intended to identify the simplest underlying mechanism. It has been shown that relatively small groups of individuals are able to effectively communicate and come to ‘agreement’ with respect to a common direction of motion through spontaneous collisions; in bigger groups, the same mechanism is important but insufficient in itself

    A Unified Approach to Building and Controlling Spiking Attractor Networks

    Full text link

    Reproducing Five Motor Behaviors in a Salamander Robot With Virtual Muscles and a Distributed CPG Controller Regulated by Drive Signals and Proprioceptive Feedback

    Get PDF
    Diverse locomotor behaviors emerge from the interactions between the spinal central pattern generator (CPG), descending brain signals and sensory feedback. Salamander motor behaviors include swimming, struggling, forward underwater stepping, and forward and backward terrestrial stepping. Electromyographic and kinematic recordings of the trunk show that each of these five behaviors is characterized by specific patterns of muscle activation and body curvature. Electrophysiological recordings in isolated spinal cords show even more diverse patterns of activity. Using numerical modeling and robotics, we explored the mechanisms through which descending brain signals and proprioceptive feedback could take advantage of the flexibility of the spinal CPG to generate different motor patterns. Adapting a previous CPG model based on abstract oscillators, we propose a model that reproduces the features of spinal cord recordings: the diversity of motor patterns, the correlation between phase lags and cycle frequencies, and the spontaneous switches between slow and fast rhythms. The five salamander behaviors were reproduced by connecting the CPG model to a mechanical simulation of the salamander with virtual muscles and local proprioceptive feedback. The main results were validated on a robot. A distributed controller was used to obtain the fast control loops necessary for implementing the virtual muscles. The distributed control is demonstrated in an experiment where the robot splits into multiple functional parts. The five salamander behaviors were emulated by regulating the CPG with two descending drives. Reproducing the kinematics of backward stepping and struggling however required stronger muscle contractions. The passive oscillations observed in the salamander's tail during forward underwater stepping could be reproduced using a third descending drive of zero to the tail oscillators. This reduced the drag on the body in our hydrodynamic simulation. We explored the effect of local proprioceptive feedback during swimming and forward terrestrial stepping. We found that feedback could replace or reduce the need for different drives in both cases. It also reduced the variability of intersegmental phase lags toward values appropriate for locomotion. Our work suggests that different motor behaviors do not require different CPG circuits: a single circuit can produce various behaviors when modulated by descending drive and sensory feedback

    Mechanisms of the Coregulation of Multiple Ionic Currents for the Control of Neuronal Activity

    Get PDF
    An open question in contemporary neuroscience is how neuromodulators coregulate multiple conductances to maintain functional neuronal activity. Neuromodulators enact changes to properties of biophysical characteristics, such as the maximal conductance or voltage of half-activation of an ionic current, which determine the type and properties of neuronal activity. We apply dynamical systems theory to study the changes to neuronal activity that arise from neuromodulation. Neuromulators can act on multiple targets within a cell. The coregulation of mulitple ionic currents extends the scope of dynamic control on neuronal activity. Different aspects of neuronal activity can be independently controlled by different currents. The coregulation of multiple ionic currents provides precise control over the temporal characteristics of neuronal activity. Compensatory changes in multiple ionic currents could be used to avoid dangerous dynamics or maintain some aspect of neuronal activity. The coregulation of multiple ionic currents can be used as bifurcation control to ensure robust dynamics or expand the range of coexisting regimes. Multiple ionic currents could be involved in increasing the range of dynamic control over neuronal activity. The coregulation of multiple ionic currents in neuromodulation expands the range over which biophysical parameters support functional activity

    Intermediate Stable Phase Locked States In Oscillator Networks

    Get PDF
    The study of nonlinear oscillations is important in a variety of physical and biological contexts (especially in neuroscience). Synchronization of oscillators has been a problem of interest in recent years. In networks of nearest neighbor coupled oscillators it is possible to obtain synchrony between oscillators, but also a variety of constant phase shifts between 0 and pi. We coin these phase shifts intermediate stable phase-locked states. In neuroscience, both individual neurons and populations of neurons can behave as complex nonlinear oscillators. Intermediate stable phase-locked states are shown to be obtainable between individual oscillators and populations of identical oscillators.These intermediate stable phase-locked states may be useful in the construction of central pattern generators: autonomous neural cicuits responsible for motor behavior. In large chains and two-dimenional arrays of oscillators, intermediate stable phase-locked states provide a mechanism to produce waves and patterns that cannot be obtained in traditional network models. A particular pattern of interest is known as an anti-wave. This pattern corresponds to the collision of two waves from opposite ends of an oscillator chain. This wave may be relevant in the spinal central pattern generators of various fish. Anti-wave solutions in both conductance based neuron models and phase oscillator models are analyzed. It is shown that such solutions arise in phase oscillator models in which the nonlinearity (interaction function) contains both higher order odd and even Fourier modes. These modes are prominent in pairs of synchronous oscillators which lose stability in a supercritical pitchfork bifurcation
    corecore