472 research outputs found

    Construction of pp-ary Sequence Families of Period (pnβˆ’1)/2(p^n-1)/2 and Cross-Correlation of pp-ary m-Sequences and Their Decimated Sequences

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : 전기·컴퓨터곡학뢀, 2015. 2. λ…Έμ’…μ„ .This dissertation includes three main contributions: a construction of a new family of pp-ary sequences of period pnβˆ’12\frac{p^n-1}{2} with low correlation, a derivation of the cross-correlation values of decimated pp-ary m-sequences and their decimations, and an upper bound on the cross-correlation values of ternary m-sequences and their decimations. First, for an odd prime p=3mod  4p = 3 \mod 4 and an odd integer nn, a new family of pp-ary sequences of period N=pnβˆ’12N = \frac{p^n-1}{2} with low correlation is proposed. The family is constructed by shifts and additions of two decimated m-sequences with the decimation factors 2 and d=Nβˆ’pnβˆ’1d = N-p^{n-1}. The upper bound on the maximum value of the magnitude of the correlation of the family is shown to be 2N+1/2=2pn2\sqrt{N+1/2} = \sqrt{2p^n} by using the generalized Kloosterman sums. The family size is four times the period of sequences, 2(pnβˆ’1)2(p^n-1). Second, based on the work by Helleseth \cite{Helleseth1}, the cross-correlation values between two decimated m-sequences by 2 and 4pn/2βˆ’24p^{n/2}-2 are derived, where pp is an odd prime and n=2mn = 2m is an integer. The cross-correlation is at most 4-valued and their values are {βˆ’1Β±pn/22,βˆ’1+3pn/22,βˆ’1+5pn/22}\{\frac{-1\pm p^{n/2}}{2}, \frac{-1+3p^{n/2}}{2}, \frac{-1+5p^{n/2}}{2}\}. As a result, for pmβ‰ 2mod  3p^m \neq 2 \mod 3, a new sequence family with the maximum correlation value 52N\frac{5}{\sqrt{2}} \sqrt{N} and the family size 4N4N is obtained, where N=pnβˆ’12N = \frac{p^n-1}{2} is the period of sequences in the family. Lastly, the upper bound on the cross-correlation values of ternary m-sequences and their decimations by d=34k+2βˆ’32k+1+24+32k+1d = \frac{3^{4k+2}-3^{2k+1}+2}{4}+3^{2k+1} is investigated, where kk is an integer and the period of m-sequences is N=34k+2βˆ’1N = 3^{4k+2}-1. The magnitude of the cross-correlation is upper bounded by 12β‹…32k+3+1=4.5N+1+1\frac{1}{2} \cdot 3^{2k+3}+1 = 4.5 \sqrt{N+1}+1. To show this, the quadratic form technique and Bluher's results \cite{Bluher} are employed. While many previous results using quadratic form technique consider two quadratic forms, four quadratic forms are involved in this case. It is proved that quadratic forms have only even ranks and at most one of four quadratic forms has the lowest rank 4kβˆ’24k-2.Abstract i Contents iii List of Tables vi List of Figures vii 1. Introduction 1 1.1. Background 1 1.2. Overview of Dissertation 9 2. Sequences with Low Correlation 11 2.1. Trace Functions and Sequences 11 2.2. Sequences with Low Autocorrelation 13 2.3. Sequence Families with Low Correlation 17 3. A New Family of p-ary Sequences of Period (p^nβˆ’1)/2 with Low Correlation 21 3.1. Introduction 22 3.2. Characters 24 3.3. Gaussian Sums and Kloosterman Sums 26 3.4. Notations 28 3.5. Definition of Sequence Family 29 3.6. Correlation Bound 30 3.7. Size of Sequence Family 35 3.8. An Example 38 3.9. Related Work 40 3.10. Conclusion 41 4. On the Cross-Correlation between Two Decimated p-ary m-Sequences by 2 and 4p^{n/2}βˆ’2 44 4.1. Introduction 44 4.2. Decimated Sequences of Period (p^nβˆ’1)/2 49 4.3. Correlation Bound 53 4.4. Examples 59 4.5. A New Sequence Family of Period (p^nβˆ’1)/2 60 4.6. Discussions 61 4.7. Conclusion 67 5. On the Cross-Correlation of Ternary m-Sequences of Period 3^{4k+2} βˆ’ 1 with Decimation (3^{4k+2}βˆ’3^{2k+1}+2)/4 + 3^{2k+1} 69 5.1. Introduction 69 5.2. Quadratic Forms and Linearized Polynomials 71 5.3. Number of Solutions of x^{p^s+1} βˆ’ cx + c 78 5.4. Notations 79 5.5. Quadratic Form Expression of the Cross-Correlation Function 80 5.6. Ranks of Quadratic Forms 83 5.7. Upper Bound on the Cross-Correlation Function 89 5.8. Examples 93 5.9. Related Works 94 5.10. Conclusion 94 6. Conclusions 96 Bibliography 98 초둝 109Docto

    두 p진 λ°μ‹œλ©”μ΄μ…˜ μˆ˜μ—΄ κ°„μ˜ μƒν˜Έμƒκ΄€λ„

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : 전기·컴퓨터곡학뢀, 2017. 2. λ…Έμ’…μ„ .In this dissertation, the cross-correlation between two differently decimated sequences of a pp-ary m-sequence is considered. Two main contributions are as follows. First, for an odd prime pp, n=2mn=2m, and a pp-ary m-sequence of period pnβˆ’1p^n -1, the cross-correlation between two decimated sequences by 22 and dd are investigated. Two cases of dd, d=(pm+1)22d=\frac{(p^m +1)^2}{2} with pm≑1(mod4)p^m \equiv 1 \pmod4 and d=(pm+1)2pe+1d=\frac{(p^m +1)^2}{p^e +1} with odd m/em/e are considered. The value distribution of the cross-correlation function for each case is completely deterimined. Also, by using these decimated sequences, two new families of pp-ary sequences of period pnβˆ’12\frac{p^n -1}{2} with good correlation property are constructed. Second, an upper bound on the magnitude of the cross-correlation function between two decimated sequences of a pp-ary m-sequence is derived. The two decimation factors are 22 and 2(pm+1)2(p^m +1), where pp is an odd prime, n=2mn=2m, and pm≑1(mod4)p^m \equiv 1 \pmod4. In fact, these two sequences corresponds to the sequences used for the construction of pp-ary Kasami sequences decimated by 22. The upper bound is given as 32pm+12\frac{3}{2}p^m + \frac{1}{2}. Also, using this result, an upper bound of the cross-correlation magnitude between a pp-ary m-sequence and its decimated sequence with the decimation factor d=(pm+1)22d=\frac{(p^m +1)^2}{2} is derived.1 Introduction 1 1.1 Background 1 1.2 Overview of This Dissertation 7 2 Preliminaries 9 2.1 Finite Fields 9 2.2 Trace Functions and Sequences 11 2.3 Cross-Correlation Between Two Sequences 13 2.4 Characters and Weils Bound 15 2.5 Trace-Orthogonal Basis 16 2.6 Known Exponential Sums 17 2.7 Cross-Correlation of pp-ary Kasami Sequence Family 18 2.8 Previous Results on the Cross-Correlation for Decimations with gcd⁑(pnβˆ’1,d)=pn/2+12\gcd(p^n -1, d)=\frac{p^{n/2}+1}{2} 20 2.9 Cross-Correlation Between Two Decimated Sequences by 22 and d=4d=4 or pn+12\frac{p^n +1}{2} 23 3 New pp-ary Sequence Families of Period pnβˆ’12\frac{p^n -1}{2} with Good Correlation Property Using Two Decimated Sequences 26 3.1 Cross-Correlation for the Case of d=(pm+1)22d=\frac{(p^m +1)^2}{2} 27 3.2 Cross-Correlation for the Case of d=(pm+1)2pe+1d=\frac{(p^m +1)^2}{p^e +1} 37 3.3 Construction of New Sequence Families 43 4 Upper Bound on the Cross-Correlation Between Two Decimated pp-ary Sequences 52 4.1 Cross-Correlation Between s(2t+i)s(2t+i) and s(2(pm+1)t+j)s(2(p^m +1)t +j) 53 4.2 Cross-Correlation Between s(t)s(t) and s((pm+1)22t)s(\frac{(p^m +1)^2}{2} t) 66 5 Conclusions 69 Bibliography 72 Abstract (In Korean) 80Docto

    Phase and precession evolution in the Burgers equation

    Full text link
    We present a phenomenological study of the phase dynamics of the one-dimensional stochastically forced Burgers equation, and of the same equation under a Fourier mode reduction on a fractal set. We study the connection between coherent structures in real space and the evolution of triads in Fourier space. Concerning the one-dimensional case, we find that triad phases show alignments and synchronisations that favour energy fluxes towards small scales --a direct cascade. In addition, strongly dissipative real-space structures are associated with entangled correlations amongst the phase precession frequencies and the amplitude evolution of Fourier triads. As a result, triad precession frequencies show a non-Gaussian distribution with multiple peaks and fat tails, and there is a significant correlation between triad precession frequencies and amplitude growth. Links with dynamical systems approach are briefly discussed, such as the role of unstable critical points in state space. On the other hand, by reducing the fractal dimension DD of the underlying Fourier set, we observe: i) a tendency toward a more Gaussian statistics, ii) a loss of alignment of triad phases leading to a depletion of the energy flux, and iii) the simultaneous reduction of the correlation between the growth of Fourier mode amplitudes and the precession frequencies of triad phases

    Codes and Pseudo-Geometric Designs from the Ternary mm-Sequences with Welch-type decimation d=2β‹…3(nβˆ’1)/2+1d=2\cdot 3^{(n-1)/2}+1

    Full text link
    Pseudo-geometric designs are combinatorial designs which share the same parameters as a finite geometry design, but which are not isomorphic to that design. As far as we know, many pseudo-geometric designs have been constructed by the methods of finite geometries and combinatorics. However, none of pseudo-geometric designs with the parameters S(2,q+1,(qnβˆ’1)/(qβˆ’1))S\left (2, q+1,(q^n-1)/(q-1)\right ) is constructed by the approach of coding theory. In this paper, we use cyclic codes to construct pseudo-geometric designs. We firstly present a family of ternary cyclic codes from the mm-sequences with Welch-type decimation d=2β‹…3(nβˆ’1)/2+1d=2\cdot 3^{(n-1)/2}+1, and obtain some infinite family of 2-designs and a family of Steiner systems S(2,4,(3nβˆ’1)/2)S\left (2, 4, (3^n-1)/2\right ) using these cyclic codes and their duals. Moreover, the parameters of these cyclic codes and their shortened codes are also determined. Some of those ternary codes are optimal or almost optimal. Finally, we show that one of these obtained Steiner systems is inequivalent to the point-line design of the projective space PG(nβˆ’1,3)\mathrm{PG}(n-1,3) and thus is a pseudo-geometric design.Comment: 15 pages. arXiv admin note: text overlap with arXiv:2206.15153, arXiv:2110.0388

    Unsupervised inference of protein fitness landscape from deep mutational scan

    Get PDF
    The recent technological advances underlying the screening of large combinatorial libraries in high- throughput mutational scans, deepen our understanding of adaptive protein evolution and boost its applications in protein design. Nevertheless, the large number of possible genotypes requires suitable computational methods for data analysis, the prediction of mutational effects and the generation of optimized sequences. We describe a computational method that, trained on sequencing samples from multiple rounds of a screening experiment, provides a model of the genotype-fitness relationship. We tested the method on five large-scale mutational scans, yielding accurate predictions of the mutational effects on fitness. The inferred fitness landscape is robust to experimental and sampling noise and exhibits high generalization power in terms of broader sequence space exploration and higher fitness variant predictions. We investigate the role of epistasis and show that the inferred model provides structural information about the 3D contacts in the molecular fold

    Multiresolution analysis of a class of nonstationary processes

    Get PDF
    Caption title.Includes bibliographical references (p. 24-26).Supported by the ARO. DAAL03-92-G-0115 Supported by the NSF. MIP-9015281H. Krim and J.-C. Pesquet
    • …
    corecore