5 research outputs found

    Information Spreading in Stationary Markovian Evolving Graphs

    Full text link
    Markovian evolving graphs are dynamic-graph models where the links among a fixed set of nodes change during time according to an arbitrary Markovian rule. They are extremely general and they can well describe important dynamic-network scenarios. We study the speed of information spreading in the "stationary phase" by analyzing the completion time of the "flooding mechanism". We prove a general theorem that establishes an upper bound on flooding time in any stationary Markovian evolving graph in terms of its node-expansion properties. We apply our theorem in two natural and relevant cases of such dynamic graphs. "Geometric Markovian evolving graphs" where the Markovian behaviour is yielded by "n" mobile radio stations, with fixed transmission radius, that perform independent random walks over a square region of the plane. "Edge-Markovian evolving graphs" where the probability of existence of any edge at time "t" depends on the existence (or not) of the same edge at time "t-1". In both cases, the obtained upper bounds hold "with high probability" and they are nearly tight. In fact, they turn out to be tight for a large range of the values of the input parameters. As for geometric Markovian evolving graphs, our result represents the first analytical upper bound for flooding time on a class of concrete mobile networks.Comment: 16 page

    Information Propagation Speed in Mobile and Delay Tolerant Networks

    Full text link
    The goal of this paper is to increase our understanding of the fundamental performance limits of mobile and Delay Tolerant Networks (DTNs), where end-to-end multi-hop paths may not exist and communication routes may only be available through time and mobility. We use analytical tools to derive generic theoretical upper bounds for the information propagation speed in large scale mobile and intermittently connected networks. In other words, we upper-bound the optimal performance, in terms of delay, that can be achieved using any routing algorithm. We then show how our analysis can be applied to specific mobility and graph models to obtain specific analytical estimates. In particular, in two-dimensional networks, when nodes move at a maximum speed vv and their density ν\nu is small (the network is sparse and surely disconnected), we prove that the information propagation speed is upper bounded by (1+O(ν2))v1+O(\nu^2))v in the random way-point model, while it is upper bounded by O(νvv)O(\sqrt{\nu v} v) for other mobility models (random walk, Brownian motion). We also present simulations that confirm the validity of the bounds in these scenarios. Finally, we generalize our results to one-dimensional and three-dimensional networks

    Preventing Layer-3 wormhole attacks in ad-hoc networks with multipath DSR

    Full text link
    corecore