15 research outputs found

    Convex Hulls, Oracles, and Homology

    Get PDF
    This paper presents a new algorithm for the convex hull problem, which is based on a reduction to a combinatorial decision problem POLYTOPE-COMPLETENESS-COMBINATORIAL, which in turn can be solved by a simplicial homology computation. Like other convex hull algorithms, our algorithm is polynomial (in the size of input plus output) for simplicial or simple input. We show that the ``no''-case of POLYTOPE-COMPLETENESS-COMBINATORIAL has a certificate that can be checked in polynomial time (if integrity of the input is guaranteed).Comment: 11 pages, 2 figure

    Sharpening Geometric Inequalities using Computable Symmetry Measures

    Full text link
    Many classical geometric inequalities on functionals of convex bodies depend on the dimension of the ambient space. We show that this dimension dependence may often be replaced (totally or partially) by different symmetry measures of the convex body. Since these coefficients are bounded by the dimension but possibly smaller, our inequalities sharpen the original ones. Since they can often be computed efficiently, the improved bounds may also be used to obtain better bounds in approximation algorithms.Comment: This is a preprint. The proper publication in final form is available at journals.cambridge.org, DOI 10.1112/S002557931400029

    Computational Aspects of the Hausdorff Distance in Unbounded Dimension

    Full text link
    We study the computational complexity of determining the Hausdorff distance of two polytopes given in halfspace- or vertex-presentation in arbitrary dimension. Subsequently, a matching problem is investigated where a convex body is allowed to be homothetically transformed in order to minimize its Hausdorff distance to another one. For this problem, we characterize optimal solutions, deduce a Helly-type theorem and give polynomial time (approximation) algorithms for polytopes

    A Semidefinite Hierarchy for Containment of Spectrahedra

    Full text link
    A spectrahedron is the positivity region of a linear matrix pencil and thus the feasible set of a semidefinite program. We propose and study a hierarchy of sufficient semidefinite conditions to certify the containment of a spectrahedron in another one. This approach comes from applying a moment relaxation to a suitable polynomial optimization formulation. The hierarchical criterion is stronger than a solitary semidefinite criterion discussed earlier by Helton, Klep, and McCullough as well as by the authors. Moreover, several exactness results for the solitary criterion can be brought forward to the hierarchical approach. The hierarchy also applies to the (equivalent) question of checking whether a map between matrix (sub-)spaces is positive. In this context, the solitary criterion checks whether the map is completely positive, and thus our results provide a hierarchy between positivity and complete positivity.Comment: 24 pages, 2 figures; minor corrections; to appear in SIAM J. Opti
    corecore