18,016 research outputs found

    On the complexity of computing Kronecker coefficients

    Full text link
    We study the complexity of computing Kronecker coefficients g(λ,μ,ν)g(\lambda,\mu,\nu). We give explicit bounds in terms of the number of parts \ell in the partitions, their largest part size NN and the smallest second part MM of the three partitions. When M=O(1)M = O(1), i.e. one of the partitions is hook-like, the bounds are linear in logN\log N, but depend exponentially on \ell. Moreover, similar bounds hold even when M=eO()M=e^{O(\ell)}. By a separate argument, we show that the positivity of Kronecker coefficients can be decided in O(logN)O(\log N) time for a bounded number \ell of parts and without restriction on MM. Related problems of computing Kronecker coefficients when one partition is a hook, and computing characters of SnS_n are also considered.Comment: v3: incorporated referee's comments; accepted to Computational Complexit

    Reduced Kronecker coefficients and counter-examples to Mulmuley's strong saturation conjecture SH

    Get PDF
    We provide counter-examples to Mulmuley's strong saturation conjecture (strong SH) for the Kronecker coefficients. This conjecture was proposed in the setting of Geometric Complexity Theory to show that deciding whether or not a Kronecker coefficient is zero can be done in polynomial time. We also provide a short proof of the #P-hardness of computing the Kronecker coefficients. Both results rely on the connections between the Kronecker coefficients and another family of structural constants in the representation theory of the symmetric groups: Murnaghan's reduced Kronecker coefficients. An appendix by Mulmuley introduces a relaxed form of the saturation hypothesis SH, still strong enough for the aims of Geometric Complexity Theory.Comment: 25 pages. With an appendix by Ketan Mulmuley. To appear in Computational Complexity. See also http://emmanuel.jean.briand.free.fr/publications

    Representations of the symmetric group are decomposable in polynomial time

    Full text link
    We introduce an algorithm to decompose orthogonal matrix representations of the symmetric group over the reals into irreducible representations, which as a by-product also computes the multiplicities of the irreducible representations. The algorithm applied to a dd-dimensional representation of SnS_n is shown to have a complexity of O(n2d3)O(n^2 d^3) operations for determining multiplicities of irreducible representations and a further O(nd4)O(n d^4) operations to fully decompose representations with non-trivial multiplicities. These complexity bounds are pessimistic and in a practical implementation using floating point arithmetic and exploiting sparsity we observe better complexity. We demonstrate this algorithm on the problem of computing multiplicities of two tensor products of irreducible representations (the Kronecker coefficients problem) as well as higher order tensor products. For hook and hook-like irreducible representations the algorithm has polynomial complexity as nn increases

    Symbolic-Numeric Tools for Analytic Combinatorics in Several Variables

    Full text link
    Analytic combinatorics studies the asymptotic behaviour of sequences through the analytic properties of their generating functions. This article provides effective algorithms required for the study of analytic combinatorics in several variables, together with their complexity analyses. Given a multivariate rational function we show how to compute its smooth isolated critical points, with respect to a polynomial map encoding asymptotic behaviour, in complexity singly exponential in the degree of its denominator. We introduce a numerical Kronecker representation for solutions of polynomial systems with rational coefficients and show that it can be used to decide several properties (0 coordinate, equal coordinates, sign conditions for real solutions, and vanishing of a polynomial) in good bit complexity. Among the critical points, those that are minimal---a property governed by inequalities on the moduli of the coordinates---typically determine the dominant asymptotics of the diagonal coefficient sequence. When the Taylor expansion at the origin has all non-negative coefficients (known as the `combinatorial case') and under regularity conditions, we utilize this Kronecker representation to determine probabilistically the minimal critical points in complexity singly exponential in the degree of the denominator, with good control over the exponent in the bit complexity estimate. Generically in the combinatorial case, this allows one to automatically and rigorously determine asymptotics for the diagonal coefficient sequence. Examples obtained with a preliminary implementation show the wide applicability of this approach.Comment: As accepted to proceedings of ISSAC 201

    Kronecker Coefficients For Some Near-Rectangular Partitions

    Full text link
    We give formulae for computing Kronecker coefficients occurring in the expansion of sμsνs_{\mu}*s_{\nu}, where both μ\mu and ν\nu are nearly rectangular, and have smallest parts equal to either 1 or 2. In particular, we study s(n,n1,1)s(n,n)s_{(n,n-1,1)}*s_{(n,n)}, s(n1,n1,1)s(n,n1)s_{(n-1,n-1,1)}*s_{(n,n-1)}, s(n1,n1,2)s(n,n)s_{(n-1,n-1,2)}*s_{(n,n)}, s(n1,n1,1,1)s(n,n)s_{(n-1,n-1,1,1)}*s_{(n,n)} and s(n,n,1)s(n,n,1)s_{(n,n,1)}*s_{(n,n,1)}. Our approach relies on the interplay between manipulation of symmetric functions and the representation theory of the symmetric group, mainly employing the Pieri rule and a useful identity of Littlewood. As a consequence of these formulae, we also derive an expression enumerating certain standard Young tableaux of bounded height, in terms of the Motzkin and Catalan numbers

    On vanishing of Kronecker coefficients

    Full text link
    We show that the problem of deciding positivity of Kronecker coefficients is NP-hard. Previously, this problem was conjectured to be in P, just as for the Littlewood-Richardson coefficients. Our result establishes in a formal way that Kronecker coefficients are more difficult than Littlewood-Richardson coefficients, unless P=NP. We also show that there exists a #P-formula for a particular subclass of Kronecker coefficients whose positivity is NP-hard to decide. This is an evidence that, despite the hardness of the positivity problem, there may well exist a positive combinatorial formula for the Kronecker coefficients. Finding such a formula is a major open problem in representation theory and algebraic combinatorics. Finally, we consider the existence of the partition triples (λ,μ,π)(\lambda, \mu, \pi) such that the Kronecker coefficient kμ,πλ=0k^\lambda_{\mu, \pi} = 0 but the Kronecker coefficient klμ,lπlλ>0k^{l \lambda}_{l \mu, l \pi} > 0 for some integer l>1l>1. Such "holes" are of great interest as they witness the failure of the saturation property for the Kronecker coefficients, which is still poorly understood. Using insight from computational complexity theory, we turn our hardness proof into a positive result: We show that not only do there exist many such triples, but they can also be found efficiently. Specifically, we show that, for any 0<ϵ10<\epsilon\leq1, there exists 0<a<10<a<1 such that, for all mm, there exist Ω(2ma)\Omega(2^{m^a}) partition triples (λ,μ,μ)(\lambda,\mu,\mu) in the Kronecker cone such that: (a) the Kronecker coefficient kμ,μλk^\lambda_{\mu,\mu} is zero, (b) the height of μ\mu is mm, (c) the height of λ\lambda is mϵ\le m^\epsilon, and (d) λ=μm3|\lambda|=|\mu| \le m^3. The proof of the last result illustrates the effectiveness of the explicit proof strategy of GCT.Comment: 43 pages, 1 figur

    The Saxl Conjecture and the Dominance Order

    Full text link
    In 2012 Jan Saxl conjectured that all irreducible representations of the symmetric group occur in the decomposition of the tensor square of the irreducible representation corresponding to the staircase partition. We make progress on this conjecture by proving the occurrence of all those irreducibles which correspond to partitions that are comparable to the staircase partition in the dominance order. Moreover, we use our result to show the occurrence of all irreducibles corresponding to hook partitions. This generalizes results by Pak, Panova, and Vallejo from 2013.Comment: 11 page

    Membership in moment polytopes is in NP and coNP

    Full text link
    We show that the problem of deciding membership in the moment polytope associated with a finite-dimensional unitary representation of a compact, connected Lie group is in NP and coNP. This is the first non-trivial result on the computational complexity of this problem, which naively amounts to a quadratically-constrained program. Our result applies in particular to the Kronecker polytopes, and therefore to the problem of deciding positivity of the stretched Kronecker coefficients. In contrast, it has recently been shown that deciding positivity of a single Kronecker coefficient is NP-hard in general [Ikenmeyer, Mulmuley and Walter, arXiv:1507.02955]. We discuss the consequences of our work in the context of complexity theory and the quantum marginal problem.Comment: 20 page

    Quasipolynomial formulas for the Kronecker coefficients indexed by two two-row shapes (extended abstract)

    Get PDF
    We show that the Kronecker coefficients indexed by two two–row shapes are given by quadratic quasipolynomial formulas whose domains are the maximal cells of a fan. Simple calculations provide explicitly the quasipolynomial formulas and a description of the associated fan. These new formulas are obtained from analogous formulas for the corresponding reduced Kronecker coefficients and a formula recovering the Kronecker coefficients from the reduced Kronecker coefficients. As an application, we characterize all the Kronecker coefficients indexed by two two-row shapes that are equal to zero. This allowed us to disprove a conjecture of Mulmuley about the behavior of the stretching functions attached to the Kronecker coefficients.Ministerio de Educación y Ciencia MTM2007–64509Junta de Andalucía FQM–33
    corecore