233 research outputs found

    Exact Algorithm for Graph Homomorphism and Locally Injective Graph Homomorphism

    Full text link
    For graphs GG and HH, a homomorphism from GG to HH is a function φ ⁣:V(G)V(H)\varphi \colon V(G) \to V(H), which maps vertices adjacent in GG to adjacent vertices of HH. A homomorphism is locally injective if no two vertices with a common neighbor are mapped to a single vertex in HH. Many cases of graph homomorphism and locally injective graph homomorphism are NP-complete, so there is little hope to design polynomial-time algorithms for them. In this paper we present an algorithm for graph homomorphism and locally injective homomorphism working in time O((b+2)V(G))\mathcal{O}^*((b + 2)^{|V(G)|}), where bb is the bandwidth of the complement of HH

    Low-level dichotomy for Quantified Constraint Satisfaction Problems

    Full text link
    Building on a result of Larose and Tesson for constraint satisfaction problems (CSP s), we uncover a dichotomy for the quantified constraint satisfaction problem QCSP(B), where B is a finite structure that is a core. Specifically, such problems are either in ALogtime or are L-hard. This involves demonstrating that if CSP(B) is first-order expressible, and B is a core, then QCSP(B) is in ALogtime. We show that the class of B such that CSP(B) is first-order expressible (indeed, trivially true) is a microcosm for all QCSPs. Specifically, for any B there exists a C such that CSP(C) is trivially true, yet QCSP(B) and QCSP(C) are equivalent under logspace reductions
    corecore