184 research outputs found

    Bregman Voronoi Diagrams: Properties, Algorithms and Applications

    Get PDF
    The Voronoi diagram of a finite set of objects is a fundamental geometric structure that subdivides the embedding space into regions, each region consisting of the points that are closer to a given object than to the others. We may define many variants of Voronoi diagrams depending on the class of objects, the distance functions and the embedding space. In this paper, we investigate a framework for defining and building Voronoi diagrams for a broad class of distance functions called Bregman divergences. Bregman divergences include not only the traditional (squared) Euclidean distance but also various divergence measures based on entropic functions. Accordingly, Bregman Voronoi diagrams allow to define information-theoretic Voronoi diagrams in statistical parametric spaces based on the relative entropy of distributions. We define several types of Bregman diagrams, establish correspondences between those diagrams (using the Legendre transformation), and show how to compute them efficiently. We also introduce extensions of these diagrams, e.g. k-order and k-bag Bregman Voronoi diagrams, and introduce Bregman triangulations of a set of points and their connexion with Bregman Voronoi diagrams. We show that these triangulations capture many of the properties of the celebrated Delaunay triangulation. Finally, we give some applications of Bregman Voronoi diagrams which are of interest in the context of computational geometry and machine learning.Comment: Extend the proceedings abstract of SODA 2007 (46 pages, 15 figures

    Piecewise-Linear Farthest-Site Voronoi Diagrams

    Get PDF
    Voronoi diagrams induced by distance functions whose unit balls are convex polyhedra are piecewise-linear structures. Nevertheless, analyzing their combinatorial and algorithmic properties in dimensions three and higher is an intriguing problem. The situation turns easier when the farthest-site variants of such Voronoi diagrams are considered, where each site gets assigned the region of all points in space farthest from (rather than closest to) it. We give asymptotically tight upper and lower worst-case bounds on the combinatorial size of farthest-site Voronoi diagrams for convex polyhedral distance functions in general dimensions, and propose an optimal construction algorithm. Our approach is uniform in the sense that (1) it can be extended from point sites to sites that are convex polyhedra, (2) it covers the case where the distance function is additively and/or multiplicatively weighted, and (3) it allows an anisotropic scenario where each site gets allotted its particular convex distance polytope

    Dense point sets have sparse Delaunay triangulations

    Full text link
    The spread of a finite set of points is the ratio between the longest and shortest pairwise distances. We prove that the Delaunay triangulation of any set of n points in R^3 with spread D has complexity O(D^3). This bound is tight in the worst case for all D = O(sqrt{n}). In particular, the Delaunay triangulation of any dense point set has linear complexity. We also generalize this upper bound to regular triangulations of k-ply systems of balls, unions of several dense point sets, and uniform samples of smooth surfaces. On the other hand, for any n and D=O(n), we construct a regular triangulation of complexity Omega(nD) whose n vertices have spread D.Comment: 31 pages, 11 figures. Full version of SODA 2002 paper. Also available at http://www.cs.uiuc.edu/~jeffe/pubs/screw.htm

    Neighborly inscribed polytopes and Delaunay triangulations

    Get PDF
    We construct a large family of neighborly polytopes that can be realized with all the vertices on the boundary of any smooth strictly convex body. In particular, we show that there are superexponentially many combinatorially distinct neighborly polytopes that admit realizations inscribed on the sphere. These are the first examples of inscribable neighborly polytopes that are not cyclic polytopes, and provide the current best lower bound for the number of combinatorial types of inscribable polytopes (which coincides with the current best lower bound for the number of combinatorial types of polytopes). Via stereographic projections, this translates into a superexponential lower bound for the number of combinatorial types of (neighborly) Delaunay triangulations.Comment: 15 pages, 2 figures. We extended our results to arbitrary smooth strictly convex bodie

    Voronoi Diagrams for Parallel Halflines and Line Segments in Space

    Get PDF
    We consider the Euclidean Voronoi diagram for a set of nn parallel halflines in 3-space. A relation of this diagram to planar power diagrams is shown, and is used to analyze its geometric and topological properties. Moreover, an easy-to-implement space sweep algorithm is proposed that computes the Voronoi diagram for parallel halflines at logarithmic cost per face. Previously only an approximation algorithm for this problem was known. Our method of construction generalizes to Voronoi diagrams for parallel line segments, and to higher dimensions

    The Strong Dodecahedral Conjecture and Fejes Toth's Conjecture on Sphere Packings with Kissing Number Twelve

    Full text link
    This article sketches the proofs of two theorems about sphere packings in Euclidean 3-space. The first is K. Bezdek's strong dodecahedral conjecture: the surface area of every bounded Voronoi cell in a packing of balls of radius 1 is at least that of a regular dodecahedron of inradius 1. The second theorem is L. Fejes Toth's contact conjecture, which asserts that in 3-space, any packing of congruent balls such that each ball is touched by twelve others consists of hexagonal layers. Both proofs are computer assisted. Complete proofs of these theorems appear in the author's book "Dense Sphere Packings" and a related preprintComment: The citations and title have been update

    Computational Geometry Column 42

    Get PDF
    A compendium of thirty previously published open problems in computational geometry is presented.Comment: 7 pages; 72 reference
    • …
    corecore