113 research outputs found

    Local strong maximal monotonicity and full stability for parametric variational systems

    Full text link
    The paper introduces and characterizes new notions of Lipschitzian and H\"olderian full stability of solutions to general parametric variational systems described via partial subdifferential and normal cone mappings acting in Hilbert spaces. These notions, postulated certain quantitative properties of single-valued localizations of solution maps, are closely related to local strong maximal monotonicity of associated set-valued mappings. Based on advanced tools of variational analysis and generalized differentiation, we derive verifiable characterizations of the local strong maximal monotonicity and full stability notions under consideration via some positive-definiteness conditions involving second-order constructions of variational analysis. The general results obtained are specified for important classes of variational inequalities and variational conditions in both finite and infinite dimensions

    Second-order subdifferential calculus with applications to tilt stability in optimization

    Get PDF
    The paper concerns the second-order generalized differentiation theory of variational analysis and new applications of this theory to some problems of constrained optimization in finitedimensional spaces. The main attention is paid to the so-called (full and partial) second-order subdifferentials of extended-real-valued functions, which are dual-type constructions generated by coderivatives of frst-order subdifferential mappings. We develop an extended second-order subdifferential calculus and analyze the basic second-order qualification condition ensuring the fulfillment of the principal secondorder chain rule for strongly and fully amenable compositions. The calculus results obtained in this way and computing the second-order subdifferentials for piecewise linear-quadratic functions and their major specifications are applied then to the study of tilt stability of local minimizers for important classes of problems in constrained optimization that include, in particular, problems of nonlinear programming and certain classes of extended nonlinear programs described in composite terms

    Applying Metric Regularity to Compute a Condition Measure of a Smoothing Algorithm for Matrix Games

    Full text link
    We develop an approach of variational analysis and generalized differentiation to conditioning issues for two-person zero-sum matrix games. Our major results establish precise relationships between a certain condition measure of the smoothing first-order algorithm proposed by Gilpin et al. [Proceedings of the 23rd AAAI Conference (2008) pp. 75-82] and the exact bound of metric regularity for an associated set-valued mapping. In this way we compute the aforementioned condition measure in terms of the initial matrix game data

    Charactarizations of Linear Suboptimality for Mathematical Programs with Equilibrium Constraints

    Get PDF
    The paper is devoted to the study of a new notion of linear suboptimality in constrained mathematical programming. This concept is different from conventional notions of solutions to optimization-related problems, while seems to be natural and significant from the viewpoint of modern variational analysis and applications. In contrast to standard notions, it admits complete characterizations via appropriate constructions of generalized differentiation in nonconvex settings. In this paper we mainly focus on various classes of mathematical programs with equilibrium constraints (MPECs), whose principal role has been well recognized in optimization theory and its applications. Based on robust generalized differential calculus, we derive new results giving pointwise necessary and sufficient conditions for linear suboptimality in general MPECs and its important specifications involving variational and quasi variational inequalities, implicit complementarity problems, etc
    corecore