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CHARACTERIZATIONS OF LINEAR SUBOPTIMALITY FOR 
MATHEMATICAL PROGRAMS WITH EQUILIBRIUM CONSTRAINTS1 

B. S. MORDUKHOVICH 2 

Dedicated to Boris Polyak in honor of his 70th birthday 

Abstract. The paper is devoted to the study of a new notion of linear suboptimality in constrained 
mathematical programming. This concept is different from conventional notions of solutions to 
optimization-related problems, while seems to be natural and significant from the viewpoint of mod­
ern variational analysis and applications. In contrast to standard notions, it admits complete char­
acterizations via appropriate constructions of generalized differentiation in nonconvex settings. In 
this paper we mainly focus on various classes of mathematical programs with equilibrium constraints 
{MPECs), whose principal role has been well recognized in optimization theory and its applications. 
Based on robust generalized differential calculus, we derive new results giving pointwise necessary 
and sufficient conditions for linear suboptimality in general MPECs and its important specifications 
involving variational and quasi variational inequalities, implicit complementarity problems, etc. 

Key words. nonsmooth optimization-variational analysis-generalized differentiation-mathematical 
programs with equilibrium constraints-linear suboptimality-necessary and sufficient conditions 
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1 Introduction 

It is well known that, excepts convex programming and related problems with a convex 
structure, necessary conditions are usually not sufficient for conventional notions of opti­
mality. Observe also that major necessary optimality conditions in all the branches of the 
classical and modern optimization theory (e.g., Lagrange multipliers and Karush-Kuhn­
Tucker conditions in nonlinear programming, the Euler-Lagrange equation in the calculus 

of variations, the Pontryagin maximum principle in optimal control, etc.) are expressed in 

dual forms involving adjoint variables. At the same time, the very notions of optimality, in 
both scalar and vector frameworks, are formulated of course in primal terms. 

Besides the standard definition of local minimizers in mathematical programming, there 
are other notions of minima important for optimization theory and applications. Let us 

first mention the concept of sharp minima introduced by Polyak (21] from certain numer­
ical viewpoints and then applied (together with its "weak sharp" counterpart) by many 
researchers and practitioners to various aspects of optimization; see, e.g., the recent paper 
by Burke and Deng {4] with its references and discussions. 

Another interesting modification of local minima was introduced, under the name of tilt­

stable local minima, by Poliquin and Rockafellar (20] motivated by applications to sensitivity 
1Research was partially supported by the National Science Foundation under grant DMS-0304989 and 

by the Australian Research Council under grant DP-0451168. 
2Department of Mathematics, Wayne State University, Detroit, Michigan 48202, USA; 

boris@math. wayne.edu 
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analysis. The main result of [20) establishes a second-order characterization of tilt-stable 
minimizers for an extended-real-function <p on IRn via the positive definiteness of its second­
order subdifferential (Hessian) matrix in the sense of [13). For <p E 0 2, the latter condition 
reduces to the positive definiteness of the classical Hessian matrix V2<p(x); see also the 
subsequent paper [12) for f~rther developments and applications to nonsmooth optimization. 

A challenging question is to find certain modified-weaker-notions of local optimality so 
that first-order necessary conditions known for the previously recognized notions become 
necessary and sufficient in the new framework. Such a study has been started by Kruger for 
unconstrained optimization problems (see (8, 9]), where the corresponding notions are called 
"extended optimality" and "weak stationarity." It seems that the main difference between 
the conventional notions and those studied in [8, 9) and then in the author's book (15, 
Chapter 5) is that the latter relate to a certain (sub)optimality not at the point in question 
but in a neighborhood of it, and that they involve a linear rate in the sense precisely defined 
below. To some extent, this is similar to the linear rate in Lipschitz continuity (in contrast 
merely to continuity) as well as in modern concepts of metric regularity and linear openness, 
which distinguishes them from the. classical regularity and openness notions of nonlinear 
analysis. On this basis we suggested in [15) to use the name of "linear suboptimality" for 
general multiobjective optimization problems and of "linear subminimality" for constrained 
problems of minimization. 

As has been fully recognized only in the framework of modern variational analysis (even 
regarding the classical settings), the. linear rate nature of the fundamental properties involv­
ing Lipschitz continuity, metric regularity, and openness for single-valued and set-valued 
mappings is the key issue allowing us to derive complete characterizations of these prop­
erties via appropriate tools of generalized differentiation; see the books (14, 23) and their 
references. Precisely the same linear rate essence of (sub)optimality studied in this paper is 
the driving force ensuring the possibility to justify the validity of both well-known and re­
cently discovered necessary optimality conditions for the conventional notions as necessary 
and sufficient conditions for the new notion of linear suboptimality and its modifications. 

In contrast to [8, 9), where dual criteria for "extended optimality" and "weak station­
arity" are obtained in "fuzzy" forms involving Fn3chet-like constructions at points nearby 
the reference ones, in [15, Chapter 5) and in this paper we pay the main attention to 
pointwisejpointbased conditions for linear suboptimality expressed via the basic robust gen­
eralized differential constructions of [14, 15) exactly at the points in question. Besides the 
latter being more convenient for applications, the pointbased conditions allow us to employ 
the well-developed (full) calculus enjoyed by the robust constructions, which particularly 
gives us the possibility to study problems with various constrained structures important for 
both the optimization theory and its applications. A number of results in this direction 
were derived in [15, Section 5.4) for mathematical programs with conventional functional 
and geometric constraints as well as for certain problems of multiobjective optimization. 

In this paper we study a new notion of (geometric) linear sub optimality/ subminimality 
for problems of constrained minimization, which is induced by the concept of linear subex­
tremality for set systems (see Section 3) and is different in general from the notion of linear 
subminimality studied in [15, Section 5.4) in the case of constrained minimization problems. 
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For convenience we use the name of linear suboptimality (vs. "linear subminimality" in [15]) 
for the new notion under consideration observing that both of these notions agree under 
certain regularity assumptions, which however are rather restrictive; cf. [14, 15]. 

Another important issue that distinguishes this paper from the corresponding devel­
opments of [15] is that now we pay the main attention to mathematical programs with 

equilibrium constraints (MPECs), whichwere not considered in [15, Section 5.4] even from 
the point of linear subminimality. The latter broad class of mathematical programs has 
been well recognized in both optimization theory and a variety applications. We refer the 
reader to the fundamental books [12, 19] and to subsequent numerous publications for many 
theoretical and computational developments in the area of MPECs and their significant ap­
plications to economics, mechanics, engineering, finance, etc. It is important to emphasize 
that the majority of MPECs are intrinsically nonsmooth, which makes them substantially 
different from conventional classes of problems in mathematical programming. 

The focus and the principal contributions of this paper are to obtain complete character­

izations of linear suboptimality for general MPECs and their several specifications. This is 
done in the paper by employing advanced tools of variational analysis and generalized differ­

entiation. Observe that, from the viewpoint of deriving necessary and sufficient conditions 
for linear suboptimality, we need calculus rules of not merely the (right) inclusion type as 
required by the majority of applications (in particular, to necessary optimality conditions), 
but largely of the equality type that are available as well [14] for our basic generalized dif­
ferential constructions way beyond convexity. Furthermore, in infinite-dimensional spaces 
one also needs calculus of the so-called sequential normal compactness (SNC) properties 
(automatic in finite dimensions), which is strongly developed in the book [14]. Based on 
these calculi (including that for the second-order subdifferentials), we obtain verifiable char­
acterizations of linear suboptimality for the broad classes of MPECs under consideration. 

The rest of the paper is organized as follows. In Section 2 we present basic preliminar­
ies from variational analysis and generalized differentiation widely used in the sequel. In 
Section 3 we discuss the concept of linear subextremality for systems of sets and present 
its full characterization via the (exact) extremal principle, which are at the heart of the 
geometric approach to variational analysis and generalized differentiation; see [14, 15] and 
the discussions below. 

Section 4 is devoted to the study of linear suboptimality in general minimization prob­
lems with equilibrium constraints. We first define this notion from both geometric and 
analytic viewpoints and apply it to the so-called "abstract MPECs" with equilibrium con­
straints described in the form 

y E S(x) with 8: X =t Y, (1.1) 

where 8(-) is a set-valued mapping from the space of parameters x E X to the space of deci­
sion variables y E Y. In particular, S(x) may model sets of optimal solutions (or stationary 
points, or KKT points) to lower-level problems of parametric mathematical programming, 
while may also arise from different sources: parametric complementarity problems, varia:. 
tiona! inequalities and their extensions as well as from other kinds of equilibrium conditions; 
see {12, 19] and the references therein. The main attention is paid in Section 4 to the case 
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when the mapping S(-) in (1.1) is given as solution maps to parametric generalized equa­

tions/variational conditions of the type 

0 E f(x, y) + Q(x, y) (1.2) 

with a single-valued mapping f and a set-valued mapping Q. Model {1.2), which has 
been well recognized as a convenient framework for describing equilibrium constraints, was 
introduced by Robinson [22] for the case of normal cone mappings Q(y) = N (y; 0) to convex 
sets, when (1.2) reduces to parametric variational inequalities. 

Finally, in Section 5 we derive necessary and sufficient conditions for linear suboptimality 
in the most important specifications of MPECs when the set-valued part Q is given in one 
of the following composite subdifferential forms 

Q(x, y) = 8('1/J o g)(x, y), Q(x, y) = (8'1/J o g)(x, y), (1.3) 

where the first form in (1.3) involves the subdifferential (in the sense discussed in Section 2) 
of the composition of an extended-real-valued function '1/J: W -+ lR := (-co, oo] and a single­
valued mapping g: X x Y-+ W, while the second form therein is the composition of the 
sub gradient set-valued mapping 81/J : • W =1 W* and a single-valued mapping g: X x Y -+ W. 
The composite forms in (1.3),which are clearly different from each other, cover the majority 
of equilibrium constraints in (1.2) that are the most interesting from the viewpoints of both 
optimization theory and applications. 

The notation of this paper is basically standard; cf. [14, 23]. In particular, IB stands 
for the unit closed ball of the space in question, while Br(x) signifies the ball centered at 
x with radius r > 0. As usual, IN:= {1,2, ... }. Given a set-valued mapping F: X =1 X* 
between a Banach space X and its topological dual X*, we denote by 

Lims!lpF(x) := {x* EX* I 3 sequences Xk-+ x and xk ~ x* 
X-"X · 

with xk E F(xk) for all k E IN} 

the sequential Painleve-Kuratowski upper/outer limit ofF as x --+ x with respect to the 
norm topology of X and the weak* topology w* of X*. 

2 Tools of Variational. Analysis 

We first recall the generalized differential constructions of variational analysis used in what 
follows; see the book [14] with the references and discussions therein and also [2, 15, 23] for 
some related and additional material. 

Given a nonempty subset 0 of a-Banach space X and a point x E 0, the (basic, limiting) 
normal cone to 0 at x is 

N(x;O) := LimsupNg(x;O), 
n_ 

x-+x 
e!O 
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where x ~ x means that x --t x with x E n, and where 

7\T ( n) { * X*ll' (x*,u- x) } 
He XjH := x E 1m~up llu _ xll ~ e 

U-+X 

(2.2) 

is the set of €-normals ton at X E n. When e = 0 in (2.2), N(x; n) := No(x; n) is a convex 
cone called the prenormal cone or the Frechet normal cone ton at x. We can equivalently 
put c = 0 in (2.1) if n is locally closed around x and the space X is Asplund, i.e., each 
separable subspace of X has a separable dual. The latter class includes all spaces with a 
Fnkhet differentiable renorm, particularly every reflexive space. On the other hand, there 
are Asplund spaces that fail to have even a Gateaux differentiable renorm; see [5, 14] for 
more details, discussions, and references. 

In contrast to (2.2), the normal cone {2.1) is often nonconvex enjoying nevertheless full 
calculus in the framework of Asplund spaces, while a number of useful calculus results are 
also available in arbitrary Banach spaces; see [14, 15]. This calculus is mainly based on 
extremal/variational principles that replace convex separation theorems in nonconvex set­
tings. Accordingly, similar well-developed calculi hold true for the associated subgradients 
of extended-real-valued functions and coderivatives of set-valued mappings defined below. 

A set 0 c X is normally regular at x E f2 if 

N(x; n) = N(x; n). (2.3) 

Besides convex sets, this property is satisfied in other important settings, particularly for 
sets described by smooth equalities and inequalities under the Mangasarian..:Fromovitz con­
straint qualification. The reader can find more information about (2.3) and other notions 
of set regularity in [3, 14, 23] and the references therein. Note however that the normal 
regularity (2.3) fails for sets homeomorphic to graphs of single-valued nonsmooth Lips­
chitzian mappings, which is particularly the case of maximal monotone operators; see [14, 

Subsections 1.2.2 and 3.2.4]. 
Considering next a set-valued mapping F: X =t Y between Banach spaces and a point 

(x, y) E gph F from its graph 

gphF := {(x,y) EX x Yl y E F(x)}, 

we define the (normal) coderivative D* F(x, y): Y* =t X* ofF at (x, y) by 

D*F(x,y)(y*) := {x* E X*l (x*,-y*) E N{(x,y);gphF)} (2.4) 

and drop y = f(x) in (2.4) for single-valued mappings F = f: X --t Y. Observe that 

D* f(x)(y*) = {\7 f(x)*y*} for all y* E Y* 

in any Banach spaces provided that f: X --t Y is single-valued and strictly differentiable at 
x (in particular, when it is continuously differentiable around this point). This means that 
the coderivative (2.4) is a proper extension of the adjoint derivative operator to nonsmooth 
and set-valued mappings. 
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Furthermore, it comes directly from definitions (2.4) and (2.1) that the coderivative 
D* F(x, y) admits the limiting representation 

D* F(x,y)(y*) := { x* EX* I :l ck ~ 0, (xk, Yk) gp~F (x, jj), (xk, Yk) ~ (x*, y*) 

with (xk,-yk) ENek((xk,Yk);gphF) as kE.lN}, 

where we can equivalently let ck = 0 for all k E IN if both spaces X and Y are Asplund 
and if the graph ofF is locally closed around (x, y). For some results of this paper we need 
the following property 

D*F(x,y)(y*) := {x* EX*! 

called [14] the strong coderivative nqrmality ofF at (x, y); as above, orte can put ck = 0 in 
(2.5) in the Asplund space setting. Comparing (2.5) with the above limiting description of 
the coderivative (2.4), it is easy to see that the strong coderivative normality means that the 

coderivative D* F(x, Y)(y*) does not change if we replace the weak* convergence Yk ~ y* 

by the norm convergence Yi. --? y* iii Y*, while keeping the weak* convergence xk ~ x* in 
X*. Of course, property (2.5) is automatic when Y is finite-dimensional. It also holds for 
broad classes of single-valued and s~t-valued mappings with values in infinite-dimensional 
spaces. We refer the reader to Proposition 4.9 from the book {14] summarizing important 
classes of mappings that enjoy the coderivative normality property (2.5). They particularly 
include mappings that are N-regular at (x, y) (i.e., those whose graphs are normally regular 
(2.3) at (x, Y); hence both convex-graph and strictly differentiable ones), also the so-called 
"strictly Lipschitzian mappings," etc. 

Consider further an extended-real-valued function r.p: X---+ lR finite at x and the asso­
ciated epigraphical multifunction E'P: X =f lR given by 

E'P(x) := {p, E IRI fL ~ r.p(x)} with gphE'P = epir.p. 

Then the basic subdifferential or.p(x) and the singular subdifferential o00r.p(x) of r.p at x can 
be defined via the coderivative (2.4) of E'P by, respectively, 

If the space X is Asplund and if r.p is lower semicontinuous (l.s.c.) around x, then one has 
the analytic representation of both constructions in (2.6) by 

(2.7) 

via the so-called Frechet subdifferential 

ar.p(x) := {x* E X*llimi!lf r.p(x)- r.p(x)- (x*,x- x) ~ o}, 
x-->x llx- xll 
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which is also known as the subdifferential in the sense of viscosity solutions of cp at x. The 
symbol x .'f., x in (2.7) signifies that x ~ x with cp(x) ~ cp(x). Observe that o00cp(x) = {0} 
if cp is locally Lipschitzian around x. 

Finally in this section, we define and discuss certain "sequential normal compactness" 
properties of sets, set-valued mappings, and extended-real-valued functions needed for es­
tablishing the results of the paper in infinite-dimensional settings. Given a set n c X, we 
say that it is sequentially normally compact (SNC) at x E n if for any sequences ck L 0, 

n w• 
Xk ~ x, and xt: ~ 0 one has 

where ck can be equivalently omitted when X is Asplund and n is locally closed around 
x. It is automatic when n is compactly epi-Lipschitzian (CEL) around x in the sense of 
Borwein and Str6jwas [1], while in general the SNC requirement may be essentially weaker 
than the CEL one; see [7] for various examples in Banach and Asplund spaces. 

Accordingly, a set-valued mapping F: X =i Yis SNG at (x,Y) E gphF if its graph is 
SNC at this point. Given an extended-real-valued function <p: X ~ 1R finite at x, we sat 
that it is sequentially epi-compact (SNEC) at this point if its epigraph is SNC at (x, cp(x)). 
Note that latter property is automatic if cp is locally Lipschitzian around x. 

The SNC property and its modifications automatically hold in finite dimensions being 
among the most essential ingredients of infinite-dimensional variational analysis and gener­
alized differentiation. They are unavoidably present in calculus rules for robust generalized 
differential constructions discussed above and in the corresponding optimality conditions. It 
is important to emphasize that a well-developed full calculus is available for such properties 
(mostly in Asplund spaces while also in general Banach space settings), in the sense that 
they are known to be preserved while various operations are performed on sets, set-valued 
mappings, and extended-real-valued functions under natural qualification conditions; see 
[14, 15] for more details and applications. 

3 Linear Suboptimality from the Extremal Principle 

Following the geometric approach to variational analysis and generalized differentiation [14, 
15], we start with extremal properties of sets and then proceed with solutions to constrained 
optimization problems. Given two subsets n1 and 02 of a normed space X, recall [10] that 
x E n1nn2 is a local extremal point of the set system {Ot,02} if there exists a neighborhood 
U of x such that for any c > 0 there is a E cJB with 

Loosely speaking, the local extremality of sets at a common point means that they can be 
locally "pushed apart" by a small perturbation (translation) of one of them. 

It is clear that every boundary point x of a closed set n is a local extremal point of the 
pair { n, {x} }. In general, this geometric concept of extremality covers conventional notions 
of optimal solutions to various problems of scalar and vectorjmultiobjective optimization, 
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equilibria, etc. To illustrate it, let us consider a local optimal solution x to the following 
problem·of constrained optimization: 

minimize cp(x) subject to X En c X. 

Then one can easily check that (x, cp(x)) is a local extremal point of the set system {01, 02} 
in X X lR with nl = epicp and n2 = n X {cp(x)}. More examples of extremal systems of 
sets related and also not related to optimization can be found in [14, 15), 

It is not hard to observe that x E 01 n 02 is a local extremal point of the set system 
{nl, n2} if and only if 

1?(n1 n Br(x), n2 n Br(x)) = 0 for some r > 0, (3.1) 

where the measure of overlapping 'I?(Ot, 0 2) for the sets n1, fh is defined by 

Modifying the constant'!?(·,·) in (3.1), Kruger introduced (under the name of "extended 
extremality" in [8] and "weak stationarity" in [9]) the new notion of local extremality for set 
systems in normed spaces, which in fact reflects a certain amount of linear subextremality; 
cf. Section 1 and the discussion below. 

Definition 3.1 (linear subextremality of sets). Given Ot, 02 c X and x E 01 n 02, 
we say that the set system {f!t, 02} is LINEARLY SUBEXTREMAL around the point x if 

.a (,..... r. _). 
1 
.. f1?([nl-x1]nrJB,[n2-x2]nrJB) . 

0 Vlin ~~~~~~2,X := lmln = 
Xi~X r 

(3.2) 

r!O 

with i = 1, 2 under the liminf sign in (3.2). 

It is clear that the set extremality in the sense of (3.1) implies the linear s:ubextremality 
in the sense of (3.2), but not vice versa. Let us discuss some specific features of linear 
subextremality for set systems that distinguish this notion from the concept of {3.1). 

(a) The constant 'l?nn(n~, 0 2, x) defined in (3.2), in contrast to the one from (3.1), 
involves a linear rate of set perturbations as r l 0. Therefore, condition (3.2) describes a 
local nonoverlapping at linear rate for the sets 0 1 and 0 2, while condition (3.1) corresponds 
to a local nonoverlapping of these sets with an arbitrary rate as r l 0, 

(b) Condition (3.2) requires not the precise local nonoverlapping of the given sets but 
up to their infinitesimally small deformations. 

(c) Condition (3.2) does not require that the sets n1 and n2 nonoverlap exactly at the 
point x. Moreover, it is easy to obs.erve from the relations in (b) that (3.2) holds if, given 
any neighborhood U of x, there are points x1 E 0 1 n U and x2 E n2 n U ensuring an 
approximate nonoverlapping of the translated sets n1 - x1 and n2 - x2 with a linear rate. 

One of the most important results in the geometric theory of variational analysis and 
its applications is the so-called extremal principle providing necessary conditions for local 
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extremal points of systems of closed sets. Its first versions were formulated in [10], while 
the most advanced result on the exact '(point based) extremal principle is given in [14, The­
orem 2.22] in the following form: 

The Extremal Principle. Let x E fh n 02 be a local extremal point of the set system 
{nbn2}, where 0 1 and f22 are locally closed subsets of an Asplund space X. Assume that 
either 01 or f22 is SNG at x. Then there is x* EX* satisfying 

x* E N(x; 01) n (- N(x; f22)), llx*ll = 1. (3.3) 

The next theorem, which follows from [15, Theorem 5.89] and [14, Theorem 2.22(ii], 

shows that the above conditions of the extremal principle are necessary not only for local 
extremal points of { 0 1, n2} but also for a less restrictive notion of linear subextremality, 
providing actually a characterization of Asplund spaces. Moreover, these conditions happen 
to be necessary and sufficient for linear subextremality in finite-dimensional spaces. 

Theorem 3.2 (linear subextremality via the extremal principle). Let n1 and f22 
be nonempty subsets of a Banach space X, and let x E 01 n 02. Assume that both f21 and 
0 2 are locally closed around x and that one of them is sequentially normally compact at this 
point. The following assertions hold: 

(i) If X is Asplund and if the system {nb 02} is linearly subextremal around x, then 
there is x* E X* satisfying the relationships of the extremal principle {3.3). 

(ii) Furthermore, if relationships (3.3) are satisfied for every set system { n1, n2} linearly 
subextremal around x, then the space X is Asplund. 

(iii) Let dim X < oo. Then the system {nb 02} is linearly subextremal around x if and 
only if the relationships of the extremal principle (3.3) are satisfied. 

In [15, Section 5.4], the reader can find applications of Theorem 3.2 to various problems 
of constrained multiobjective optimization in finite and infinite dimensions. In what follows 
we provide new applications of this theorem and calculus results available for our basic gen­
eralized differential constructions to mathematical programs with equilibrium constraints. 

4 Linear Suboptimality for General MPECs 

Consider first the following problem of constrained optimization with geometric constraints: 

minimize rp(x) subject to X En c X, (4.1) 

where rp: X ---+ lR is an extended-real-valued function on the normed space X. We have 
seen in Section 3 that a local optimal solution x (in the standard sense) to problem ( 4.1) 
geometrically corresponds to the fact that (x, rp(x)) is a local extremal point to the set 
system { epi rp, n X { rp(x)}} in X X JR. Following this geometric idea and having in mind the 
subsequent application of the extremal principle, we define the notion of local sub optimality 
for ( 4.1) based on local subextremality of the above set system formulated in Definition 3.1. 
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Definition 4.1 {linear suboptimality for constrained minimization problems). 
Let x be a feasible solution to problem (4.1). We say that it is LINEARLY SUBOPTIMAL with 
respect to (<p,O) if the point (x,<p(x)) is linearly subextremal for the set system {nbn2} 
with f!1 := epi<p and f22 := f2 X {<p(x)}. 

It is not hard to check that xis linearly suboptimal to {4.1) in the sense of Definition 4.1 
if it is linearly subminimal to (4.1) in the sense of [15, Definition 5.101], i.e., 

lim sup 
fl_ 

X-+X 
cp(x)-'->cp(x) 

r!O 

inf <p(u)- <p(x) = 0, 
uEBr(x)nn r 

(4.2) 

which is in the line of Kruger [9] who formulated the latter property (as "weak inf-stationarity") 
with n = X and obtained its fuzzy /neighborhood characterization in terms of Fhkhet sub­
gradients applied actually to the extended-real-valued "condensed" function 

<pn(x) := <p(x) + o(x; n), 

where o(·; 0) stands for the indicator function of a set. In [15, Section 5.4], we derived 
certain exactjpointbased characterizations of linear subminimality in the constrained (4.1) 
involving our basic constructions fr9m Section 2. The most valuable "separated" charac­
terizations of linear subminimality in (4.1), i.e., those expressed via the initial data <p and 
n of the given problem, are required certain regularity assumptions on <p and 0; namely, 
the normal regularity of n at x and the "lower regularity" o<p(x) = iJ<p(x) of <p at this 
point. The regularity assumptions ensure in fact that the notions of linear suboptimality 
and linear subminimality agree; compare, e.g., [15, Corollary 5.107] and the proof of Theo­
rem 4.2 below. Let us mention that" the notion of linear suboptimality from Definition 4.1 
is always different from/weaker than linear subminimality (or weak inf-stationarity) unless 
the formulated regularity assumptions are satisfied. 

Let us emphasize a serious advantage of the above suboptimality notions in compari­
son with the convention concept of optimality: namely, the intrinsic stability of the new 
notions the with respect to perturbations of the initial data, which is not the case of stan­
dard optimality; cf. [9] and [15, Subsection 5.4.3] with the examples and discussions therein. 
Furthermore, for smooth problems of unconstrained minimization we known that linear sub­
optimality jsubminimality reduces to the classical stationarity 'V <p(x) = 0 that is the base 
for constructing descent directions and other numerical devices. Thus the weakened subop­
timality /stationarity notions under consideration can be potentially used in this framework, 
which we intend to investigate in more details in our future research. 

The crucial advantage of linear suboptimality from Definition 4.1 in comparison with 
linear subminimality ( 4.2) in constrained optimization is that now we are able to justify 
that these "separated" condition happen to be necessary and sufficient for linear subopti­
mality without imposing any regularity assumptions. Since the main goal of this paper is 
to study mathematical programs with equilibrium constraints, we consider in what follows 
only problems that fell into this category, while the reader can develop this line for other 
constrained optimization problems studied, e.g., in [15]. 

1{) 



Let us start with the abstract MPEC given in the form: 

minimize cp(x, y) subject to y E S(x), (4.3) 

where c,o: X x Y ~ lR is an extended-real-valued function whileS: X =t Y is a set-valued 
mapping. A point ( x, fi) feasible to ( 4.3) is linearly suboptimal for this problem if it is linearly 
suboptimal with respect to ( cp, 0) in the sense of Definition 4.1 with n = gph S C X x Y. 

Theorem 4.2 (linear suboptimality in abstract MPECs). Let (x, fi) be a feasible 

solution to the abstract MPEC (4.3). Assume that both spaces X andY are Asplund, that 
thefunction cp is finite at (x,fj) and l.s.c. around this point, and that the mappingS is 
locally closed-graph around ( x, fi). The following assertions hold: 

(i) Impose the qualification condition 

o00 cp(x,y) n (- N{(x,fj);gphS)] = {0} (4.4) 

and assume that either S is SNC at (x, y), or cp is SNEC at this point; observe that both the 
SNEC property of cp and the qualification condition (4.4) are automatic when cp is locally 
Lipschitzian around ( x, fj). Then the inclusion 

o E oc,o(x,fi) + N{(x,fi);gphS) (4.5) 

provides a necessary condition for linear suboptimality of (x, fi) to ( 4.3). 
(ii) Assume in addition to (4.4) that both spaces X andY be finite-dimensional. Then 

condition ( 4.5) is necessary and sufficient for linear suboptimality of (x, fi) to ( 4.3). 

Proof. According to our definition of linear suboptimality in the case of MPECs, this 
notion for (x, fj) in (4.3) means that the point (x, fj, cp(x, y)) is linearly subextremal for the 
system of locally closed sets defined by 

nl := epicp, n2 := gphS X {c,o(x,fj)} in X X y X JR. (4.6) 

Note that the product space X x Y x lR is Asplund as a product of Asplund spaces; see, 
e.g., [5]. Observe also that the SNC property of 01 at (x,y,cp(x,fi)) in (4.6) reduces to 
the SNEC property of cp at (x, y), while the SNC property of n2 at this point is equivalent 
to the SNC property of the mappingS at (x,fj). Thus we can apply to (4.6), under the 
assumptions made in the first part of this theorem, the results of Theorem 3.2 based on 
the extremal principle. Employing assertion (i) of the latter theorem, we find a dual-space 
triple (x*, y*, .X) EX* x Y* x IR such that 

o i= (x*,y*,.X) E N{(x,fi,c,o(x,fi));epic,o) n [ -N((x,fi,c,o(x,fi));gphS x {c,o(x,fi)})]. 

Taking into account the constructions of basic and singular subgradients in (2.6) and the 
simple product formula for basic normals (which holds as equality), we conclude that A i= 0 
under the qualification condition (4.4) and then derive the necessary condition (4.5) for 
linear suboptimality of (x, y) to the MPEC problem (4.3). This gives (i). 
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To justify assertion (ii) of the theorem, we can repeat the above arguments applying 
assertion (ii) of Theorem 3.2 instead of assertion (i). 6. 

Our main interest in what follows is to establish characterizations of linear suboptimality 
for MPECs (4.3) with equilibrium constraints y E S(x) given as solution maps to parametric 
generalized equations of type (1.2). On the other hand, the set-valued mapping 8(-) in 
Theorem 4.2 may be described by different relations, e.g., via functional constraints of 
equality and inequality types defined by 

S(x) := {y E Yl 'Pi(x,y) ~ 0, i = 1, ... ,m; 'Pi(x,y) = 0, i = m+1, ... ,m+r} (4.7) 

with the real-valued functions 'Pi· Let us present a consequence of Theorem 4.2(ii) for 
constraints given by ( 4. 7) confining ourself to the. case when the cost function cp is locally 
Lipschitzian around the reference point. Other results of this type can be derived from 
Theorem 4.2(ii) and equality type representations of the normal cone to graphs of set-valued 
mappings S: X =t Y given my more general relations; see [14, Subsection 4.3.1]. 

Corollary 4.3 (characterization of linear sub optimality for problems with para­
metric functional constraints). Given a feasible solution to problem ( 4.3) with the func­
tional constraints, assume that cp is,. locally Lipschitzian around (x, y), that 'Pi are strictly 

differentiable at this point for all i = 1, ... , m + r, and that· the spaces X and Y are finite­
dimensional. Impose the Mangasarian-Fromovitz constraint qualification: 

(a) Vcpm+l(x,y), ... , Vcpm+r(x,y) are linearly independent, and 
(b) there is u E X x Y satisfying 

(\lcpi(x,y),u) < o, i E {1, ... ,m}nJ{x,y), 

(\lcpi(x, y), u) = 0, i = m + 1, ... , m + r, 

where I(x, y) := { i = 1, ... , m + rl 'Pi(x, y) = 0}. Then (x, y) is linearly suboptimal to 

(4.3), (4.7) ifand only if one has the inclusion 

m+r 
- L >.i\lcpi(x,y) E acp(x,y) 

i=l· 

with some multipliers Ai E IR satisfying the sign and complementary slackness conditions 

Ai ;::: 0 and Ai<i?i(x, y) = 0 for all i = 1, ... , m. 

Proof. It follows from Theorem 4.~(ii) due to the normal cone representation 

N((x,y);gphS)={ L Ai'V'Pi(x,y)l AiEIR forall iEJ(x,Y) and 
iEI(x,y) 

.Xi;::: o if .Xi E {1, ... ,m} ni(x,Y)} 
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for the set-valued mapping S defined by (4.7) under the assumed Mangasarian-Fromovitz 
constraint qualification; see [14, Corollary 4.45]. Note that the qualification condition (4.4) 
is fulfilled due to 800<p(x, y) = {0} for locally Lipschitzian functions. 6. 

Now we consider a general class of MPECs with equilibrium constraints described by 
solution maps to generalized equations: 

minimize <p(x, y) subject to 0 E f(x, y) + Q(x, y), (4.8) 

where f: X x Y ---+ Z is a single-valued mapping while Q: X x Y ==¥ Z is a set-valued 
mapping between Banach spaces. Since the main purpose of this paper is to provide char­

acterizations of linear suboptimality for MPEC optimization problems from the viewpoint 
of the extremal principle for set systems, we restrict ourself-in view of The.orem 3.2(ii) 
characterizing set extremality-to the case of finite-dimensional spaces X and Y. Note 
that the space Z in ( 4.8) may be infinite-dimensional. To distinguish terminologically be­
tween f and Q in (4.8), it is convenient to use the terms base and field for the single-valued· 
part f and the set-valued part Q of (4.8), respectively; see [14, 15]. 

As mentioned in Section 1, the generalized equation formalism was introduced by Robin­
son [22] and has been well recognized as a very useful model for many issues in optimization 
and its applications. Note that, till the recent time, the main attention has been paid 
to the case of generalized equations with parameter-independent fields when Q = Q(y) in 
(4.8). This particularly covers equilibrium constraints given by parametric variational in­

equalities and complementarity problems. On the other hand, there are broad classes of 
optimization-related and equilibrium problems that reduce to generalized equations with 
parameter-dependent fields. Among such problems, we mention the so-called quasivaria­

tional inequalities, where the generated convex set is moving, i.e., depends on parameters. 
The next theorem provides necessary and sufficient conditions for linear suboptimality 

for MPECs ( 4.8) with equilibrium constraints governed by generalized equations in both 
cases of parameter-independent and parameter-dependent fields. The key issue to derive 
all the statements of this theorem involves, besides the principal characterization of The­
orem 3.2(ii), the usage of calculus rules with equalities allowing us to compute the normal 
cone (2.1) to the graph of the solution map 

S(x) := {y E Yj 0 E f(x,y) + Q(x,y)} (4.9) 

to the parametric generalized equation in (4.8). The theorem below applies to both cases of 
parameter-independent and parameter-dependent fields illuminating some specific features 
of the parameter-independent <:ase from the viewpoint of linear suboptimality. For simplicity 
we assume that the cost function <p is ( 4.8) is locally Lipschitzian around the reference point. 

Theorem 4.4 (characterizing linear suboptimality for MPECs governed by gen­
eralized equations). Let (x, y) be a feasible solution to (4.8), where f: X x Y ---+ Z 

is strictly differentiable at (x, Y), where Q: X ==¥ Z is closed-graph around (x, y, z) with 

z := -c-f(x,Y) E Q(x,y), and where dim(X x Y) < oo while Z is arbitrarily Banach. Sup­

pose also that the cost function <p: X x Y ---+ JR is locally Lipschitzian around (x, y). Assume 
in addition that: 
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(a) either the partial derivative operator '\1 xf(x, Y): X x Y ~ Z is surjective/onto and 
the field Q = Q(y) is parameter-independent; 

(b) or Z is Asplund, the mapping Q = Q ( x, y) is N -regular and SN C at ( x, y, z), and 
the following Fredholm qualification condition holds: the adjoint generalized equation 

0 E "Vf(x,y)*z* + D*Q(x,y,z)(z*) (4.10) 

has only the trivial solution z* = 0. 

Then (x, y) is linearly suboptimal to (4.8) if and only if there is z* E Z* satisfying 

- '\1 f(x, Y)*z* E acp(x, y) + D*Q(x, y, z)(z*). (4.11) 

Proof. ·The MPEC problem ( 4.8) under consideration is obviously equivalent to the ab­
stract MPEC ( 4.3) with the equilibrium constraint mapping S: X =t Y given by the solu­
tion map (4.9) to the underlying generalized equation. To characterize linear suboptimality 
of ( x, y) to MPEC ( 4.8), we apply assertion (ii) of Theorem 4.2 for the case of S defined 
by (4.9). It is to see that the graph of Sis locally closed around (x,y) due to the gen­
eral assumptions on f and Q and that the qualification condition (4.4) is fulfilled by the 
local Lipschitz continuity of cp around ( x, Y). It remains to compute the the normal cone 
N((x, y); gph S) for mapping (4.9) via the corresponding (generalized) differential construc­
tions for f and Q. 

To proceed, we consider first case (a) of the theorem and apply the normal cone repre­
sentation for the graph of S from [14, Theorem 4.44(i)], which is as follows: 

N((x,y);gphS) = { (x*,y*) EX* x Y*l 3z* E Z* with x* = 'lxf(x,y)*z*, 

y* E '\1 yf(x, y)z* + D*Q(y, z)(z*)} 

under the assumptions made in (a)~ Thus (4.5) reduces to (4.11), where Q = Q(y). 

To establish the characterization of linear suboptimality in case (b) with Q = Q ( x, y), 
we employ assertion (ii) of Theorem 4.44 from [14], which gives 

N((x,y);gphS) = { (x*,y*) EX* x Y*l 3z* E Z* such that (x*- 'lxf(x,y)*z*, 

· y*- '\1 vf(x, Y)*z*) E D*Q(x, y, z)(z*)} 

under the assumptions made in (b). Thus we arrive at (4.11) from (4.5). 

Let us present efficient specifications of the results of Theorem 4.4 for the case of fields 
Q in ( 4.8) having convex graphs. This assumption automatically implies the N -regularity 
of Q at any point of the graph and ensures explicit form of the corresponding conditions 
characterizing linear suboptimality in the MPEC (4.8). To proceed, we need to introduce 
some notation. 

Given Q: X x Y =t Z and f: X x Y ~ Z strictly differentiable at (x,y), consider the 
linearized set-valued operator A: X x Y ==t Z with 

A(x, y) := f(x, y) + '\1 xf(x, Y)(x- x) + \1 yf(x, y)(y- Y) + Q(x, y). 
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Corollary 4.5 (linear suboptimality for MPECs with convex-graph fields). Let 
(x, y) be a feasible solution to the MPEC (4.8), where f: X x Y ~ Z is strictly differentiable 
at ( x, y), where Q : X ::::t Z is convex-graph and also closed-graph around ( x, y, z) with 
z = -f(x,y) E Q(x,y), and where dim(X x Y) < oo while Z is arbitrarily Banach. 
Suppose also that the cost function cp: X x Y ~ IR is locally Lipschitzian around ( x, y). 
Assume in addition that either the requirements in (a) from Theorem 4.4 hold, or 
-Z is Asplund, Q = Q(x,y) is SNC at (x,y,z), and 

N(O;rgeA) = {0} with rgeA := A(X, Y). (4.12) 

Then (x, y) is linearly suboptimal to (4.8) if and only if 

0 E 8cp(x,y) +projx•xY•N(O;rgeS)}, {4.13) 

where B(x, y) := (x- x, y- y, A(x, y)) and proj stands for the corresponding projection. 

Proof. Based on [15, Theorem 4.45) and the normal cone structure for convex sets, we 
conclude that the Fredholm qualification condition in Theorem 4.4(b) is equivalent to (4.12) 
and that the normal cone to the graph of the solution map S admits the representation: 

N((x, y);gphS) = proj x•xY•N(O;rgeB). 

This shows that characterization (4.5) reduces to (4.13) in the setting under consideration 
and thus completes the proof of the corollary. 6. 

The qualification condition (4.12) obviously holds if 0 E int(rgeA), which is actually 
equivalent to (4.12) if the range of A is locally dosed around w = 0 and SNC at this 
point. Note that, due to convexity, the SNC property of the sets rgeA and gphQ can be 
characterized via their finite codimensionality by [14, Theorem 1.21). 

Let us mention a special case of ( 4.8) when Q is given by 

. { E Q(x,y) := 0 
if (x,y) E 0, 
otherwise, 

(4.14) 

where E c Z and n C X x Y are closed convex sets. In this case the interiority condition 
0 E int(rgeA) reduces to 

o E int{ f(x, y) + \1 f(x, y)(n- (x, y)) + E} 
When Q = Q(y) in (4.14), the corresponding constraint qualification (4.12) automatically 
holds under the classical Robinson qualification condition 

o E int{ f(x, y) + \1 yf(x, y)(n- y) + E }· 
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5 Classes of MPECs with Subdifferential Structures 

In the final section of the paper we establish characterizations of linear suboptimality for 
MPECs (4.8) given in the subdifferential form, where the set-valued field Q of the equilib­
rium constraint (4.9) is described by a subdifferential operator 

Q(x,y) = 8{)(x,y) (5.1) 

applied to an extended-real-valued l.s.c. function{): X x Y ~ JR. In what follows we study 
the case when 8{) in (5.1) is the basic subdifferential equivalently defined in (2.6) and (2.7), 
while other subdifferentials can be considered as well in this framework. 

It has been well recognized that subdifferential forms of generalized equations are the 
most convenient for modeling variational systems arising, e.g., from describing sets of 
optimal solutions to parametric optimization problems as well as Lagrange multipliers, 
KKT vectors, complementarity conditions, variational inequalities of different types, their 
hemivariational and quasivariational extensions, etc; In particular, generalized equations 
(1.2) defining equilibrium constraints in (4.8) reduce to the classical variational inequalities 
(known also as variational inequalities of the first kind) given by 

find y E !1 with .. (f(y),v- y) ~ 0 for all v E !1 (5.2) 

when Q(y) = N(y; !1) is the normal cone mapping generated by a convex set n. The 
normal cone operator in (5.2) can be rewritten in the subdifferential form Q(y) = 8o(y; !1) 
via the extended-real-valued indicator function 0(·; !1) of the set !1 equal to 0 for X E !1 
and oo otherwise. The classical complementarity problem corresponds to (5.2) when n is 
the nonnegative orthant in JRn. We refer the reader to the books [12, 15, 19] and to the 
bibliographies therein for detailed discussions of other kinds of variational systems that 
can be presented as generalized equations of the subdifferential type and then treated as 
equilibrium constraints for various MPECs. 

The main attention in the section is paid to characterizations of linear suboptimality 
for general classes of MPECs with equilibrium constraints of the sub differential type, where 
the field Q is given in two composite forms involving our basic first-order subdifferential 
given in (2.6) and (2.7). 

The first class of such MPECs under consideration concerns equilibrium constraints 
with subdifferential fields (5.2) in the corresponding generalized equations given via the 
composite potential (we borrow the mechanical terminology; see [14] for more discussions) 
f)= 'ljJ o gin (5.2), where g: X x Y ·~Wand '1/J: W ~JR. On the other words, we study 
MPECs of the following type: 

minimize <p(x,y) subject to 0 E f(x,y)+ 8('1/J o g)(x,y), (5.3) 

where the range space for f and Q = 8('1/J o g) in (5.3) is either X* x Y* when g = g(x, y), 
or Y* when g = g(y). Note that the composite potential structure in (5.3) is typically 
encountered in problems of constrained parametric optimization and related topics. In 
particular, this· is the case for the broad class of amenable functions f): mn ~ lR admitting 
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the representation 19( u) = ( 'lj; o g)( u), where 'lj;: JR!'l'. ~ lR is convex and l.s.c. while the 
mapping g: IRn ~ JR!'l' is C 1 around the point in question under the qualification condition 

cfXl1f;(g(u)) nker\7g(u)* = {0}; 

see [23] and also [14] for more discussions and references. 
The next theorem contains necessary and sufficient conditions (i.e., characterization) 

for linear suboptimality in MPECs (5.3). To proceed in this direction, we need to use the 
concept of the second-order subdifferential for extended-real-valued functions together with 
appropriate results (chain rules) of the second-order subdifferential calculus. 

Given an extended-real-valued function <p: X ~ lR finite at x and a basic first-order 
subgradient y E a<p(x) from (2.6), recall {13, 14] that the second-order subdifferential of <p 

at x relative to v is the mapping a2<p(x, v): X** =t X* with the values 

a2<p(x,v)(u) := (D*a<p)(x,v)(u), u EX**, (5.4) 

i.e., it is defined as the coderivative {2.4) of the first-order subdifferential mapping (an 
extension of the classical derivative-of-derivative approach in second-order differentiation). 
If <p E C2 near x, we have 

where the Hessian operator \72<p(x) is known to be symmetric in the case of reflexive spaces 
X = X**. We refer the reader to the books [14, 15] for a developed theory and various 
applications of the second-order subdifferential construction (5.4) and its modifications. 

To derive characterizations of linear suboptimality for MPECs of type (5.3), we involve 
second-order subdifferential chain rules giving a representation of D*Q = 82 (1f; o g) via 
the initial data ( 'lj;, g). Again, we may apply only those calculus results that ensure chain 
rules as equalities. For brevity and by taking into account that theN-regularity property 
does not hold for broad classes of subdifferential mappings with nonsmooth potentials (see 
[14] for more discussions and references), we restrict ourselves to case (a) of Theorem 4.4 
combined with second-order subdifferential calCulus from [14]. 

Theorem 5.1 (characterizing ~inear suboptimality for MPECs with composite 
potentials). Let Q(y) = a('lj; o g)(y) under the assumptions imposed in case (a) of Theo­
rem 4.4, where g: Y ~ W and 'lj;: W ~ lR with a Banach space W. Suppose in addition 
that g E C1 near y with the surjective derivative \1 g(y) : Y ~ W, that \7 g( ·) is strictly 
differentiable at y, and that the graph of a'lj;: w =t W* is locally norm-closed in w X W* 
around (w,v), where w := g(y) and where v E W* is the unique linear functional satisfying 

- f(x, y) = \7 g(y)*v; 

note that the closed-graph property of a'lj; is automatic if dim W < oo and if 'lj; is either 
continuous or amenable around the reference point. 

Then (x, Y) is linearly suboptimal to the MPEC formulated in (5.3) if and only if there is a 
vector u E Y** = Y satisfying the relationship 

-\7 f(x, y)*u E a<p(x, y) + ( 0, 'V2(v, g)(y)u + g(y)*82'1j;(w, v) (\7 g(Y)u)). (5.5) 
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Proof. First of all, observe that the graph of Q(y) = 8('1/J o g)(y) is locally closed around 
(fi, f ( x, fi)) under the general assumptions of the theorem. Furthermore, the required graph­
closedness for the sub differential mapping 8'1/J( ·) is automatic if W is finite-dimensional and 
if <p is either continuous or amenable around x. In the first case it easily follows from 
representation (2.7) of the basic subdifferential, while the in the second case it is justified 
in (23]. Note that more general conditions ensuring the closed-graph property of 8'1/J(·) in 
infinite dimensions are established in Theorem 3.60 of (14]. 

To prove the theorem, it remains to compute the coderivative D*Q(y,z)(u) with u E Y 
and z = - f(x, fi) for the composite subdifferential mapping Q(y) = 8('1/J o g)(y) in terms 
of the initial data '1/J and g of the MPEC (5.3) under consideration. By the second-order 
subdifferential chain rule from (14, Theorem 1.127], we have the equality 

82 (1/J og)(fi,z) = \l2(v,g)(y)u + \lg(y)*8'1/J(w,v)(\lg(fi)u) for all u E Y (5.6) 

under the assumptions made in theorem. Substituting (5.6) into relationship {4.11) of The­
orem 4.4 and taking into account that Q = Q(y) in our setting, we arrive at characterization 
(5.5) of linear suboptimality for MPEC {5.3). !::,. 

When the cost function <p in (5.3) is strictly differentiable at {x, fi) (as well as in some 
other cases; see (14]), we can decompose the subdifferential of c.p at (5.5) and thus derive the 
following specification of Theorem 5 .1. 

Corollary 5.2 (linear suboptimality for MPECs with composite potentials and 
smooth costs). Let the cost function <p be strictly differentiable at ( x, fi), in addition to 
the other assumptions of Theorem 5.1. Then (x, fi) is linearly suboptimal to MPEC (5.3) if 
and only if 

O E \1 yc.p(x, fi) + "V yf(x, y)*u + "V2(v, g) (fi)u + g(fi)*82'1/J( w, v) (\1 g(fi)u), (5. 7) 

where the vector u E Y is uniquely defined by 

-\1 x<p(x, fi) = \1 xf(x, fi)*u. (5.8) 

Proof. Since we now have 

inclusion (5.5) reduces to the simultaneous fulfillment of (5. 7) and (5.8). The uniqueness 
of u E Yin (5.8) follows from the surjectivity of the partial derivative operator "Vxf(x,jj), 
which is equivalent to the injectivity of the adjoint operator '\1 xf(x, fi)*. !::,. 

The second special class of MPECs we consider in this section involves equilibrium 
constraints given in the form 

0 E f(x, y) + (8'1/J o g)(x, y), (5.9) 

where f: X x Y ~ W*, 1/J: W-+ IR, and g: X x Y-+ W. Following (14], we label {5.9) as 
generalized equations with composite subdifferential fields. 
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Besides the classical variational inequalities and related problems mentioned above, 
model (5.9) covers a broad range of parametric variational systems important in optimiza­
tion/equilibrium theory and applications. In particular, framework (5.9) includes perturbed 
implicit complementarity problems of the type: find y E Y satisfying 

f(x, y) ~ 0, y- g(x, y) ~ 0, (f(x, y), y- g(x, y)) = 0, 

where the inequalities are understood in the sense of some order on Y (e.g., component­
wisely in finite-dimensions). Problems of this kind frequently arise in a large spectrum of 
mathematical models involving various types of economic and mechanical equilibria; see the 
books [12, 15, 19] and the references therein. 

Theorem 5.3 (characterization of linear suboptimality for MPECs with com­
posite subdifferential fields). Let Q(y) = (81/J o g)(y) under the assumptions in case (a) 
of Theorem 4.4, where 1/J: W -4 IR, and g: X X Y -4 W for a Banach space W. Assume 
in addition that g is strictly differentiable at fj with the surjective derivative \1 g(y) and 

that the graph of 81/J: w ~ W* is locally norm-closed in w X W* around (w, z), where 
w := g(y) and z :=- f(x, y); the latter is automatic when dim W < oo and when 1/J is either 
continuous or amenable around w. Then (x, yfis linearly suboptimal to the MPEC 

minimize cp(x, Y) subject to 0 E f(x, y) + (81/J o g)(x, y) (5.10) 

if and only if there is a linear functional u E W** such that 

-\1 f(x, y)*u E 8cp(x, Y) + ( 0,\1 g(y)*82,P(w, z)(u)). (5.11) 

Proof. Apply Theorem 4.4 in case (a) to the field mapping Q(y) = (81/Jog)(y). Similarly to 
Theorem 5.1, check that the graph of Q is locally closed under the assumptions made. Using 
the coderivative chain rule from [14, Theorem 1.66] and definition (5.4) of the second-order 
subdifferential, we get the equalities 

D*(8,P o g)(y, z)(u) = \1 g(y) (D*81/J) (w, z)(u) = V g(y)82,P(w, z)(u) (5.12) 

whenever u E W**. Substituting (5.12) into (4.11), and taking into account that Q = Q(y), 
we arrive at the characterization (5.11) of linear suboptimality for MPEC (5.10). !:::,. 

When the cost function cp in (5.10) is strictly differentiable, characterization (5.11) 
admits the following decomposition and simplification. 

Corollary 5.4 {linear suboptimality for MPECs with composite subdifferential 
fields and smooth costs). Assume in addition to Theorem 5.3 that cp is strictly differen­
tiable at (x, y). Then (x, y) is linearly suboptimal to MPEC (5.9) if and only if 

0 E Vycp(x,y) + \lyf(x,y)*u+ \lg(Y)*82,P(w,z)(u), 

where u E W** is uniquely defined by 
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Proof. Similar to the case of Corollary 5.2. 

We refer the reader to [6, 14, 16, 17, 18, 24, 25] and the discussions therein for efficient 
calculations of the second-order subdifferential fP'IjJ for favorable classes of extended-real­
valued functions typically encountered in optimization-related problems and their various 
applications, particularly to mechanical and economical models. This makes it possible to 
utilize the characterizations of linear suboptimality for the MPECs studied above to specific 
classes of MPEC problems arising in optimization/equilibrium theory and applications. 
Note also that the characterizations established in this paper can be extended to MPECs 
involving, along with equilibrium constraints, constraints of other types, e.g., (x, y) E n. 
This can be done, following the above procedures, by using additional equality calculus rules 
of generalized differentiation developed in [14]. 
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