15 research outputs found

    The maximal energy of classes of integral circulant graphs

    Full text link
    The energy of a graph is the sum of the moduli of the eigenvalues of its adjacency matrix. We study the energy of integral circulant graphs, also called gcd graphs, which can be characterized by their vertex count nn and a set D\cal D of divisors of nn in such a way that they have vertex set Zn\mathbb{Z}_n and edge set a,b:a,bZn,gcd(ab,n)D{{a,b}: a,b\in\mathbb{Z}_n, \gcd(a-b,n)\in {\cal D}}. For a fixed prime power n=psn=p^s and a fixed divisor set size D=r|{\cal D}| =r, we analyze the maximal energy among all matching integral circulant graphs. Let pa1<pa2<...<parp^{a_1} < p^{a_2} < ... < p^{a_r} be the elements of D{\cal D}. It turns out that the differences di=ai+1aid_i=a_{i+1}-a_{i} between the exponents of an energy maximal divisor set must satisfy certain balance conditions: (i) either all did_i equal q:=s1r1q:=\frac{s-1}{r-1}, or at most the two differences [q][q] and [q+1][q+1] may occur; %(for a certain dd depending on rr and ss) (ii) there are rules governing the sequence d1,...,dr1d_1,...,d_{r-1} of consecutive differences. For particular choices of ss and rr these conditions already guarantee maximal energy and its value can be computed explicitly.Comment: Discrete Applied Mathematics (2012

    Integral circulant graphs of prime power order with maximal energy

    Get PDF
    The energy of a graph is the sum of the moduli of the eigenvalues of its adjacency matrix. We study the energy of integral circulant graphs, also called gcd graphs, which can be characterized by their vertex count n and a set D of divisors of n in such a way that they have vertex set Zn and edge set {{a, b} : a, b in Zn; gcd(a - b, n) in D}. Using tools from convex optimization, we study the maximal energy among all integral circulant graphs of prime power order ps and varying divisor sets D. Our main result states that this maximal energy approximately lies between s(p - 1)p^(s-1) and twice this value. We construct suitable divisor sets for which the energy lies in this interval. We also characterize hyperenergetic integral circulant graphs of prime power order and exhibit an interesting topological property of their divisor sets.Comment: 25 page

    Discrete Sampling: A graph theoretic approach to Orthogonal Interpolation

    Full text link
    We study the problem of finding unitary submatrices of the N×NN \times N discrete Fourier transform matrix, in the context of interpolating a discrete bandlimited signal using an orthogonal basis. This problem is related to a diverse set of questions on idempotents on ZN\mathbb{Z}_N and tiling ZN\mathbb{Z}_N. In this work, we establish a graph-theoretic approach and connections to the problem of finding maximum cliques. We identify the key properties of these graphs that make the interpolation problem tractable when NN is a prime power, and we identify the challenges in generalizing to arbitrary NN. Finally, we investigate some connections between graph properties and the spectral-tile direction of the Fuglede conjecture.Comment: Submitted to IEEE Transactions on Information Theor
    corecore