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The energy of a graph is the sum of the moduli of the eigenvalues

of its adjacency matrix. We study the energy of integral circulant

graphs, also called gcd graphs, which can be characterized by their

vertex countn and a setD of divisors ofn in such away that theyhave

vertex set Zn and edge set {{a, b} : a, b ∈ Zn, gcd(a − b, n) ∈ D}.
Using tools from convex optimization, we analyze the maximal en-

ergy among all integral circulant graphs of prime power order ps

and varying divisor sets D. Our main result states that this max-

imal energy approximately lies between s(p − 1)ps−1 and twice

this value. We construct suitable divisor sets for which the energy

lies in this interval. We also characterize hyperenergetic integral

circulant graphs of prime power order and exhibit an interesting

topological property of their divisor sets.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Concerning the energies of integral circulant graphs, an interesting open problem is the characteri-

zation of those graphs havingmaximal energy among all integral circulant graphswith the same given

number of vertices. The goal of this paper is to establish clarity concerning this question for integral

circulant graphs of prime power order by showing how to construct such graphs with a prescribed

number of vertices whose energy comes close to the desired maximum. In the course of this, we
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approximately determine the maximal energy itself. We rely on a closed formula for the energy of an

integral circulant graph with prime power order that was established in [18].

A circulant graph is a graph whose adjacency matrix (with respect to a suitable vertex indexing)

can be constructed from its first row by a process of continued rotation of entries. An integral circulant

graph is a circulant graph whose adjacency matrix has only integer eigenvalues. The integral circulant

graphs belong to the class of Cayley graphs. By a result of So [20], they are in fact exactly the class of the

so-called gcd graphs [20], a class that originally arose as a generalization of unitary Cayley graphs. The

gcd graphs have first been described by Klotz and Sander in [10] and further studied e.g. by Bašić and

Ilić [3,7]. The way the gcd graphs are defined serves us well, so throughout this paper we shall make

use of this particular perspective of perceiving integral circulant graphs. Given an integer n and a set

D of positive divisors of n, the integral circulant graph ICG(n,D) is defined as the corresponding gcd

graph having vertex setZn = {0, 1, . . . , n−1} and edge set {{a, b} : a, b ∈ Zn, gcd(a− b, n) ∈ D}.
We consider only loopfree gcd graphs, i.e. n /∈ D.

The energy E(G) of a graph G on n vertices is defined as

E(G) =
n∑

i=1

|λi|,

where λ1, . . . , λn are the eigenvalues of the adjacency matrix of G. This concept has been introduced

several decades ago by Gutman [5], and with slight modification it can even be extended to arbitrary

real rectangular matrices, cf. [13,9].

There exist many bounds for the graph energy, see Brualdi [4] for a short survey. One example is

the bound

E(G) � n

2

(√
n + 1

)

due to Koolen and Moulton [11] for any graph with n vertices. There exist infinitely many graphs that

achieve this bound. If we consider only the class of circulant graphs, then the question arises how close

one can get to this bound. Shparlinksi [19] has given an explicit construction of an infinite family of

graphs that asymptotically achieves the bound.

Another well-known result is due to Balakrishnan, who gives an upper bound B = k +√
k(n − 1)(n − k) for the energy of a k-regular graph on n vertices (see [2]). Li et al. [12] have shown

that for every ε > 0 one can actually find infinitely many k-regular graphs G such that
E(G)
B

> 1 − ε.
There has been some recent work on the energy of unitary Cayley graphs, which are exactly the

gcd graphs with D = {1}. Let us abbreviate E(n,D) = E(ICG(n,D)) and let n = p
s1
1 · · · pskk . Then, in

the context of gcd graphs, the following result has been obtained by Ramaswamy and Veena [14] and,

independently, by Ilić [7]:

E(n, {1}) = 2kϕ(n),

where ϕ denotes Euler’s totient function.

Ilić [7] has slightly generalized this to some gcd graphs that are not unitary Cayley graphs:

E(n, {1, pi}) = 2k−1piϕ(n/pi), provided that si = 1,

E(n, {pi, pj}) = 2kϕ(n), provided that s1 = · · · = sk = 1.

In [18] the authors proved an explicit formula for the energy of ICG(ps,D) for any prime power ps

and any divisor set D = {pa1 , pa2 , . . . , par } with 0 � a1 < a2 < · · · < ar � s − 1, namely

E(ps,D) = 2(p − 1)

⎛
⎝ps−1r − (p − 1)

r−1∑
k=1

r∑
i=k+1

ps−ai+ak−1

⎞
⎠ . (1)
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The study of energies is usually linked to the search for hyperenergetic graphs. A graph G on n

vertices is called hyperenergetic if its energy is greater than the energy of the complete graph on the

same number of vertices, i.e. if E(G) > E(Kn) = 2(n − 1). Initially, the existence of hyperenergetic

graphs had been doubted, but then more and more classes of hyperenergetic graphs were discovered.

For example, Hou and Gutman show in [6] that if a graph G has more than 2n − 1 edges, then its line

graph L(G) is necessarily hyperenergetic. Consequently, L(Kn) is hyperenergetic for all n � 5, a fact

that seems to have been known before.

Work by Stevanović and Stanković [21] indicates that the class of circulant graphs contains awealth

of hyperenergetic graphs. Although integral circulant graphs are quite rare among circulant graphs (cf.

[1]), the subclass of integral circulant graphs still exhibitsmanyhyperenergeticmembers. For example,

it has been shown by Ramaswamy and Veena [14] that almost all unitary Cayley graphs on n vertices

are hyperenergetic. The necessary and sufficient condition is that n has at least three distinct prime

divisors or that n is odd in case of only two prime divisors. Consequently, there exist no gcd graphs

ICG(ps,D)withD = {1} that are hyperenergetic. However, for less trivial divisor sets it is also possible

to find hyperenergetic gcd graphs on ps vertices. Some examples are given in [18]. For instance, for

p � 3 and s � 3, the choice D = {1, ps−1} yields a hyperenergetic gcd graph.

Not surprisingly, the class of graphs ICG(ps,D) contains also non-hyperenergetic elements, termed

hypoenergetic. For the minimal energy Emin(n) of all integral circulant graphs with n vertices it has

been shown in [18] that

Emin(p
s) = 2(p − 1)ps−1 = E(Kps) − E(Kps−1).

This follows directly from Eq. (1). Theminimal energy is achieved exactly for the singleton divisor sets.

The maximum energy of graphs ICG(ps,D) is not as easily described. A classification of integral

circulant graphs of prime power order ps with very small exponent having maximal energy has been

provided in [18], but it became clear that a general result as simple as in the case of minimal energy

could not be expected. It will be the purpose of this article to clarify the structure of divisor sets

imposing maximal energy on the corresponding gcd graph. Our main Theorem 4.2 states that the

maximal energy among all integral circulant graphs of prime power order ps and varying divisor sets

D approximately lies between s(p − 1)ps−1 and twice this value. Tools from convex optimization

will turn out to be the appropriate machinery to reach that goal. We shall compute bounds for the

maximumenergy and describe how to construct divisor sets for integral circulant graphs on ps vertices

thathavenearmaximalenergy.Along theway,wecharacterizehyperenergetic integral circulantgraphs

of prime power order and exhibit an interesting topological property of their divisor sets. Namely, the

set containing all ordered exponent tuples corresponding to these divisor sets can be obtained by

intersecting an integer lattice with a suitable convex set.

2. Preliminary definitions and results

For any positive integer n, let

Emax(n) := max {E(n,D) : D ⊆ {1 � d < n : d|n}}.
For givenD = {pa1 , pa2 , . . . , par }with 0 � a1 < · · · < ar � s−1, we have by (1), i.e. by Theorem

2.1 in [18], that

E(ps,D) = 2(p − 1)ps−1 (
r − (p − 1)hp(a1, . . . , ar)

)
, (2)

where

hp(x1, . . . , xr) :=
r−1∑
k=1

r∑
i=k+1

1

pxi−xk
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for arbitrary real numbers x1, . . . , xr . In order to evaluate Emax(p
s), ourmain taskwill be to determine

Emax(p
s, r) := max {E(ps,D) : D ⊆ {1 � d < n : d|n}, |D| = r}

as precisely as possible, given a fixed integer r. Therefore, we define for 1 � r � s + 1

mp(s, r) := min {hp(a1, . . . , ar) : 0 � a1 < a2 < · · · < ar � s with ai ∈ Z}. (3)

It is then clear from (2) that

Emax(p
s, r) = 2(p − 1)ps−1 (

r − (p − 1)mp(s − 1, r)
)
. (4)

Later on it remains to compute

Emax(p
s) = max {Emax(p

s, r) : 1 � r � s}. (5)

Proposition 2.1. Let p be a prime. Then

(i) mp(s, 2) = 1
ps

for all integers s � 1, and the minimum is attained only for a1 = 0 and a2 = s.

(ii) mp(s, 3) = 1

p[s/2] + 1
ps

+ 1

ps−[s/2] for all integers s � 2. The minimum is only obtained for a1 = 0,

a2 = [s/2] (or, additionally, for a2 = [s/2] + 1 if s is odd) and a3 = s.

Proof. Proposition 3.1 in [18]. �

A set D ⊆ {1 � d < n : d|n} is called n-maximal if E(n,D) = Emax(n). As a consequence of

Proposition 2.1 and some other results in [18], we obtained

Theorem 2.1. Let p be a prime. Then

(i) Emax(p) = 2(p − 1) with the only p-maximal set D = {1}.
(ii) Emax(p

2) = 2(p − 1)(p + 1) with the only p2-maximal set D = {1, p}.
(iii) Emax(p

3) = 2(p−1)(2p2 −p+1)with the only p3-maximal setD = {1, p2}, except for the prime

p = 2 for which D = {1, 2, 4} is also 23-maximal.

(iv) Emax(p
4) = 2(p−1)(2p3+1)with the only p4-maximal setsD = {1, p, p3} andD = {1, p2, p3}.

Proof. Theorem 3.2 in [18]. �

One can prove formulae for Emax(p
s) with arbitrary exponent s by using (4) and (5). As indicated

in Proposition 2.1, we need to choose integers 0 � a1 � a2 � · · · � ar � s − 1 in such a way that

hp(a1, . . . , ar) =
r−1∑
k=1

r∑
i=k+1

1

pai−ak

becomes minimal. The choice of a1 = 0 and ar = s − 1 is clearly compulsory.

The case r = 3 (cf. Proposition 2.1(ii)) suggests to place a1, a2, . . . , ar−1, ar equidistant in the

interval [0, s−1]. Aminor obstacle is the fact that the corresponding choice ai := (i−1)(s−1)
r−1

(1� i� r)

does not yield integral numbers as required. Taking nearest integers easily resolves this problem, but

only at the cost of approximate instead of exact formulae. More seriously, it turns out that in general,

even allowing real ai, their equidistant positioning does not yield the desired minimum mp(s, r). The
cases presented in Proposition 2.1 do not yet exhibit this problem since it makes its debut for r = 4.

An illuminating example can be found in the final section of [18].
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For the sake of being able to use analytic methods, we define for a prime p, a positive real number

σ and a positive integer r

m̃p(σ, r) := min {hp(α1, . . . , αr) : 0 � α1 � α2 � · · · � αr � σ, αi ∈ R}. (6)

Observe that now the αi may be real numbers as opposed to integers in the definition ofmp(s, r). It is
obvious that for r � 2

m̃p(σ, r) = min {hp(0, α2, . . . , αr−1, σ ) : 0 � α2 � · · · � αr−1 � σ, αi ∈ R}. (7)

Clearly, m̃p(σ, 2) = 1/pσ , uniquely obtained for α1 = 0, α2 = σ , and m̃p(σ, 3) = 1/pσ + 2/pσ/2,

uniquely obtained for α1 = 0, α2 = σ/2, α3 = σ (cf. Proposition 2.1(ii)).

3. Tools from convex optimization

In order to determine m̃p(σ, r) in general it is crucial to observe that hp(x1, . . . , xr) is a convex

function.

Proposition 3.1. Let r be a fixed positive integer, b �= 1 a fixed positive real number and p a fixed prime.

(i) The real function

gb(y1, . . . , yr) :=
r∑

k=1

r∑
i=k

i∏
j=k

1

byj

is strictly convex on R
r .

(ii) The function hp(x1, . . . , xr) is convex on R
r .

Proof. (i) Let (u1, . . . , ur) �= (v1, . . . , vr) be arbitrary real vectors. On setting

Uk,i :=
i∏

j=k

1

buj
and Vk,i :=

i∏
j=k

1

bvj
,

we have Uk,k = b−uk and Vk,k = b−vk for 1 � k � r. Since 0 < b �= 1 and uk �= vk for at least one k,

we have Uk,k �= Vk,k for that k. By the inequality between the weighted arithmetic and the weighted

geometric mean, which is an immediate consequence of Jensen’s inequality (cf. [15, p. 1100, Theorems

17 and 18]), we haveUt ·V1−t � tU+ (1− t)V for all positive real numbersU and V and all 0 < t < 1,

with equality if and only if U = V . It follows that for all 1 � k � i � r

Ut
k,iV

1−t
k,i � tUk,i + (1 − t)Vk,i,

and strict inequality for at least one pair k, i. Hence

gb
(
t(u1, . . . , ur) + (1 − t)(v1, . . . , vr)

) =
r∑

k=1

r∑
i=k

Ut
k,iV

1−t
k,i

<
r∑

k=1

r∑
i=k

tUk,i +
r∑

k=1

r∑
i=k

(1 − t)Vk,i

= tgb(u1, . . . , ur) + (1 − t)gb(v1, . . . , vr).

This proves that g is strictly convex on R
r .
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(ii) Let (u1, . . . , ur), (v1, . . . , vr) ∈ R
r and 0 < t < 1. Then by (i)

hp
(
t(u1, . . . , ur) + (1 − t)(v1, . . . , vr)

)
= gp

(
t(u2 − u1, u3 − u2, . . . , ur − ur−1) + (1 − t)(v2 − v1, v3 − v2, . . . , vr − vr−1)

)
� tgp

(
u2 − u1, u3 − u2, . . . , ur − ur−1

) + (1 − t)gp
(
v2 − v1, v3 − v2, . . . , vr − vr−1

)
= thp(u1, . . . , ur) + (1 − t)hp(v1, . . . , vr),

which shows the convexity of hp. �

An easy corollary of (1) is a characterization of the hyperenergetic gcd graphs of prime power

order, namely that ICG(ps,D) with D = {pa1 , pa2 , . . . , par } and 0 � a1 < a2 < · · · < ar � s − 1 is

hyperenergetic if and only if

r−1∑
k=1

r∑
i=k+1

1

pai−ak
<

1

p − 1

(
r − ps − 1

ps−1(p − 1)

)
(8)

(cf. Corollary 2.2 in [18]). As a first consequence of the convexity of hp we are able to refine this by

showing that the set of hyperenergetic integral circulant graphs has a nice topological feature. Given

a prime p and positive integers r � s, we define H(ps, r) as the set containing all (a1, . . . , ar) ∈ Z
r

with 0 � a1 < · · · < ar � s − 1 and the property that ICG(ps, {pa1 , . . . , par }) is hyperenergetic.

Then we can derive the following remarkable statement:

Corollary 3.1. Let p be a prime and r � s positive integers. Then there is a convex set C ⊆ R
r such that

H(ps, r) = C ∩ Z
r .

Proof. For fixed p, s and r, we define

c(p, s, r) := 1

p − 1

(
r − ps − 1

ps−1(p − 1)

)
.

Since hp is convex on R
r by Proposition 3.1, the so-called level set

L := {(x1, . . . , xr) ∈ R
r : hp(x1, . . . , xr) < c(p, s, r)}

is also convex (cf. [17, p. 8 and Proposition 2.7]). Since

K := {(x1, . . . , xr) ∈ R
r : 0 � x1 < x2 < · · · < xr � s − 1}

is obviously convex as well, the intersection C := L ∩ K has the same property. By (8) we know

that some (a1, . . . , ar) ∈ Z
r lies in H(ps, r) if and only if 0 � a1 < · · · < ar � s − 1 and

hp(a1, . . . , ar) < c(p, s, r), hence H(ps, r) = C ∩ Z
r . �

We shall use some further standard results from convex optimization.

Proposition 3.2. Let f : U → R be a strictly convex function defined on a convex set U ⊆ R
r .

(i) If U is an open set then each extremal point of f is a minimum.

(ii) If f has a minimal point on U then it is unique.

Proof. The proofs of the assertions can be found in [16, pp. 123–124, Theorems A and C], in [8], or in

[17, Theorem 2.6]. �
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Our main tool for the computation of m̃p(σ, r) will be

Proposition 3.3. Let r � 1 be a fixed integer. We define the real function

f (x1, . . . , xr) :=
r∑

k=1

r∑
i=k

i∏
j=k

xj

for (x1, . . . , xr) ∈ [0, 1]r . Let 0 < ρ � 2−r . Then

min {f (x1, . . . , xr) : (x1, . . . , xr) ∈ [0, 1]r, x1 · x2 · · · xr = ρ} = (r + μ(ρ, r)) · μ(ρ, r),

where μ(ρ, r) := ν(ρ, r)/(1 − ν(ρ, r)) and x = ν(ρ, r) is the unique real solution of the equation

xr = ρ(1 − x)2 on the interval [0, 1]. The minimum obviously equals ρ for r = 1, and it is ρ + 2
√

ρ for

r = 2.

There is a unique minimizer for each r, namely⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ ∈ [0, 1] for r = 1,

(μ(ρ, 2), μ(ρ, 2)) ∈ [0, 1]2 for r = 2,

(μ(ρ, r), ν(ρ, r), . . . , ν(ρ, r), μ(ρ, r)) ∈ [0, 1]r for r � 3.

In the special case r = 2, we have explicitly μ(ρ, 2) = √
ρ .

Proof. For r � 2, we have to deal with nothing more than quadratic equations, and in these cases all

assertions follow easily from standard analysis.

For r � 3, we use the method of Lagrange multipliers to obtain necessary conditions for local

minima of f (x1, . . . , xr) subject to the constraint x1 · x2 · · · xr = ρ . Accordingly, let

F(x1, . . . , xr, λ) := f (x1, . . . , xr) + λ(ρ − x1 · x2 · · · xr).
A necessary condition for a local minimum is that all partial derivatives Fxt := ∂F

∂xt
(1 � t � r) as well

as Fλ := ∂F
∂λ

vanish at that point. We have for 1 � t � r

fxt (x1, . . . , xr) =
r∑

k=1

r∑
i=k

∂

∂xt

⎛
⎝ i∏

j=k

xj

⎞
⎠

=
min{r,t}∑
k=1

r∑
i=max{k,t}

∂

∂xt

⎛
⎝ i∏

j=k

xj

⎞
⎠ =

t∑
k=1

r∑
i=t

i∏
j=k

j �=t

xj.

Hence

xtFxt = xtfxt (x1, . . . , xr) − xt

⎛
⎜⎜⎜⎝λ

r∏
j=1

j �=t

xj

⎞
⎟⎟⎟⎠ =

t∑
k=1

r∑
i=t

i∏
j=k

xj − λρ,

and we want to find all solutions (x1, . . . , xr) of the following system of equations:⎧⎪⎪⎨
⎪⎪⎩

t∑
k=1

r∑
i=t

i∏
j=k

xj = λρ (1 � t � r) ,

x1 · · · xr = ρ.

(9)
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From now on we consider r and ρ to be fixed and abbreviate μ := μ(ρ, r) and ν := ν(ρ, r).

Claim: One solution of (9) is given by x1 = xr = μ and x2 = · · · = xr−1 = ν , where we have

0 < ν < μ < 1.

The real function h(x) := xr −ρ(1−x)2 is strictly increasing on the interval [0, 1]with h(0) = −ρ
and h(1) = 1. Hence xr = ρ(1 − x)2 has a unique solution on (0, 1), which is denoted by ν . Since
νr < ρ < 2−r , we even know ν < 1/2. This implies ν < μ < 1.

In order to show that (μ, ν, ν, . . . , ν, μ) ∈ (0, 1)r satisfies (9), we separate terms containing x1
or xr from the others in the double sum of (9) and obtain for x1 = xr = μ and x2 = · · · = xr−1 = ν

t∑
k=1

r∑
i=t

i∏
j=k

xj = x1 · · · xr +
r−1∑
i=t

i∏
j=1

xj +
t∑

k=2

r∏
j=k

xj +
t∑

k=2

r−1∑
i=t

i∏
j=k

xj

= ρ +
r−1∑
i=t

μ · ν i−1 +
t∑

k=2

νr−k · μ +
t∑

k=2

r−1∑
i=t

ν i−k+1

= ρ + μ · νt−1 − νr−1

1 − ν
+ μ · νr−t − νr−1

1 − ν
+

t∑
k=2

νt−k+1 − νr−k+1

1 − ν

= ρ + μ · νt−1 − 2νr−1 + νr−t

1 − ν
+ 1

1 − ν

(
ν − νt

1 − ν
− νr−t+1 − νr

1 − ν

)

= ρ + 1

(1 − ν)2

(
μ(1 − ν)(νt−1 − 2νr−1 + νr−t) + (ν − νt − νr−t+1 + νr)

)
.

Since μ(1 − ν) = ν , we conclude for (x1, . . . , xr) = (μ, ν, . . . , ν, μ) that

t∑
k=1

r∑
i=t

i∏
j=k

xj = ρ + ν · (1 − νr−1)

(1 − ν)2
= ρ

νr−1
.

Setting λ := 1/νr−1, this reveals that (μ, ν, . . . , ν, μ) satisfies all the upper equations in (9). The

observation that

x1 · · · xr = μ2 · νr−2 = νr

(1 − ν)2
= ρ

completes the proof of the claim.

We now want to show that f (μ, ν, . . . , ν, μ) is in fact a minimum subject to the constraint

x1 · x2 · · · xr = ρ , and we shall see as well that (μ, ν, . . . , ν, μ) is the unique minimizer.

ByProposition3.1(i) the function g2(y1, . . . , yr) = f (2−y1 , . . . , 2−yr ) is strictly convex for all (y1, . . . ,
yr) ∈ R

r . Our claim has shown that (μ, ν, . . . , ν, μ) is an extremal point of f on the set

{(x1, . . . , xr) ∈ [0, 1]r : x1 · · · xr = ρ}. Therefore (μ′, ν′, . . . , ν′, μ′) with

μ′ := log(1/μ)

log 2
and ν′ := log(1/ν)

log 2

is an extremal point of g2 on the set

U := {(y1, . . . , yr) ∈ R
r
�0 : 2−y1 · · · 2−yr = ρ} = {(y1, . . . , yr) ∈ R

r
�0 : y1+· · ·+yr = σ },

where

σ := log(1/ρ)

log 2
� r.
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The set U apparently is the simplex with vertices (σ, 0, . . . , 0), (0, σ, 0, . . . , 0), . . . , (0, . . . , 0, σ ),
and therefore a convex subset of R

r
�0. It is immediately clear that (μ′, ν′, . . . , ν′, μ′) does not lie on

the boundary of the simplex U, in other words: the point belongs to the set U0 of inner points of U.

Altogether the function g2 is strictly convex on the open convex set U0 and (μ′, ν′, . . . , ν′, μ′) is an
extremal point of g2 in U0. By Proposition 3.2(i) this point (μ′, ν′, . . . , ν′, μ′) is a minimal point of

g2, and by Proposition 3.2(ii) it is unique. Since log2 is strictly monotonic, the point (μ, ν, . . . , ν, μ)
is the unique minimizer with respect to f on {(x1, . . . , xr) ∈ [0, 1]r : x1 · · · xr = ρ}.

It remains to calculate the minimum. We obtain similarly as before

f (x1, . . . , xr) = x1 · · · xr +
r−1∑
i=1

i∏
j=1

xj +
r∑

k=2

r∏
j=k

xj +
r−1∑
k=2

r−1∑
i=k

i∏
j=k

xj.

By evaluating the geometric sums and using the identity μ = ν/(1 − ν), it follows that

f (μ, ν, . . . , ν, μ) = μ2νr−2 + 2μ · 1 − νr−1

1 − ν
+ 1

1 − ν

(
(r − 2)ν − ν2 − νr

1 − ν

)

= νr

(1 − ν)2
+ 2ν(1 − νr−1)

(1 − ν)2
+ ν

1 − ν
· (r − 2) − ν2 − νr

(1 − ν)2

= 2ν − ν2

(1 − ν)2
+ ν

1 − ν
· (r − 2)

= 2ν

1 − ν
+ ν2

(1 − ν)2
+ ν

1 − ν
· (r − 2)

= 2μ + μ2 + μ(r − 2) = (r + μ) · μ. �

Corollary 3.2. Let p be a prime and r � 2 an integer. For a given real number σ � (r − 1) log 2/ log p

let x = ν̃p(σ, r) be the unique real solution of the equation pσ xr−1 = (1− x)2 on the interval [0, 1], and
μ̃p(σ, r) := ν̃p(σ, r)/(1 − ν̃p(σ, r)). Then

m̃p(σ, r) = (r − 1 + μ̃p(σ, r)) · μ̃p(σ, r),

and this value is exclusively attained by hp(α1, . . . , αr) for αj = αj(σ, r) (1 � j � r) defined as

α1(σ, r) := 0, αr(σ, r) := σ and

αj(σ, r) := log
(
μ̃p(σ, r)−1

)
log p

+ (j − 2)
log

(
ν̃p(σ, r)−1

)
log p

(r � 3; 2 � j � r − 1). (10)

Proof. Let 0 � α1 � α2 � . . . � αr � σ be arbitrary, and set yj := αj+1 − αj for 1 � j � r − 1.

Hence αi − αk = yk + yk+1 + · · · + yi−1 for 1 � k < i � r. This implies

hp(α1, . . . , αr) =
r−1∑
k=1

r∑
i=k+1

1

pyk+···+yi−1

=
r−1∑
k=1

r∑
i=k+1

i−1∏
j=k

1

pyj
=

r−1∑
k=1

r−1∑
i=k

i∏
j=k

1

pyj
.

On setting xj := p−yj for 1 � j � r − 1, we have hp(α1, . . . , αr) = f (x1, . . . , xr−1) for the function

f as defined in Proposition 3.3. By hypothesis, r − 1 � 1 and (x1, . . . , xr−1) ∈ [0, 1]r−1. Now we
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search for conditions to be imposed on the αj in order to hit the minimum m̃p(σ, r). First of all, we

necessarily have α1 = 0 and αr = σ according to (7). Hence

x1 · x2 · · · xr−1 = 1

py1+···+yr−1
= 1

pαr−α1
= 1

pσ
.

Again by hypothesis

0 < ρ := 1

pσ
� 1

2r−1
.

Applying Proposition 3.3, we conclude that

m̃p(σ, r) = (r − 1 + μ(ρ, r − 1)) · μ(ρ, r − 1) = (r − 1 + μ̃p(σ, r)) · μ̃p(σ, r),

where this minimum is exclusively obtained for x1 = xr−1 = μ̃p(σ, r) and x2 = x3 = · · · = xr−2 =
ν̃p(σ, r). This yields for the given values of the xj

1

pα2
= 1

pα2−α1
= 1

py1
= x1 = μ̃p(σ, r),

hence α2 = log(1/μ̃p(σ, r))/ log p, and for 2 � j � r − 2

1

pαj+1−αj
= 1

pyj
= xj = ν̃p(σ, r),

which implies (10). �

4. Integral circulant graphs with maximal energy

Up to this point, all we have done with respect to general integral circulant graphs with maxi-

mal energy refers to real parameters αj in hp(α1, . . . , αr). As a consequence, we have the follow-

ing upper bound for Emax(p
s, r), but we are left with the task to find out how close we can get to

the “real maximum" if we restrict ourselves to integral parameters a1, . . . , ar , as required by our

problem.

Theorem 4.1. For a prime p and integers 2 � r � s, we have

Emax(p
s, r) � 2(p − 1)ps−1

(
r − (p − 1)

(
r − 1 + μ̃p(s − 1, r)

)
μ̃p(s − 1, r)

)
,

where μ̃p is defined in Corollary 3.2.

Proof. By Corollary 3.2 and the definitions ofmp(s− 1, r) and m̃p(σ, r), we immediately have for any

integer s � r − 1

mp(s − 1, r) � (r − 1 + μ̃p(s − 1, r)) · μ̃p(s − 1, r).

Now our theorem follows at once from this and (4). �

The first step we take towards integrality of the parameters is to approximate the numbers

μ̃p(s − 1, r), ν̃p(s − 1, r) and the corresponding αj(s − 1, r), all defined in Corollary 3.2, by simpler

terms.
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Proposition 4.1. For a prime p and integers 3 � r � s, let δ := p
− s−1

r−1 . Then we have

(i) δ � μ̃p(s − 1, r) < δ + δ2

1−δ
;

(ii) δ − δ2

1+δ
� ν̃p(s − 1, r) < δ � 1

p
;

(iii) 0 < log
(
ν̃p(s − 1, r)−1

) − s−1
r−1

log p < 3
(r−1)p

;

(iv) − 3
2p

< log
(
μ̃p(s − 1, r)−1

) − s−1
r−1

log p � 0;

(v)
∣∣∣αj(s − 1, r) − (j − 1) s−1

r−1

∣∣∣ < 3
p log p

for 1 � j � r.

Proof. (i) It follows from the definition of μ̃ := μ̃p(s−1, r) in Corollary 3.2 that it satisfies the identity

ps−1μ̃r−1 = (1 + μ̃)r−3, clearly implying 0 < μ̃ < 1. For r = 3, this means that μ̃ = δ. For r � 4,

we obtain by virtue of binomial expansion

μ̃ = δ(1 + μ̃)
r−3
r−1 = δ + δ

∞∑
k=1

(
r−3
r−1

k

)
μ̃k,

where the infinite series has alternating decreasing terms. Hence

0 < μ̃ − δ < δ · r − 3

r − 1
· μ̃ < δμ̃,

and consequently μ̃ < δ/(1 − δ), which implies (i).

(ii) Since the real function x 
→ x/(1 + x) is strictly increasing for x > 0, we obtain by (i)

δ − δ2

1 + δ
= δ

1 + δ
� μ̃

1 + μ̃
<

δ + δ2

1−δ

1 + δ + δ2

1−δ

= δ.

The definition in Corollary 3.2 yields that ν̃ := ν̃p(s − 1, r) = μ̃/(1 + μ̃), which proves our claim.

(iii) By (ii), we have 0 < ν̃ < 1
p
. Taking logarithms in the identity ps−1ν̃r−1 = (1 − ν̃)2

(cf. Corollary 3.2), we obtain

log
1

ν̃
= s − 1

r − 1
log p − 2

r − 1
log(1 − ν̃). (11)

Since ν̃ < 1/p, the Taylor expansion of log(1 − ν̃) yields

0 < − log(1 − ν̃) =
∞∑
k=1

ν̃k

k
< ν̃ + ν̃2

2

∞∑
k=0

ν̃k = ν̃ + ν̃2

2(1 − ν̃)
<

3

2
ν̃ <

3

2p
.

Inserting this into (11), we get

0 < log
1

ν̃
− s − 1

r − 1
log p <

3

(r − 1)p
.

(iv) For the numbers αj := αj(s − 1, r), as defined for 1 � j � r in Corollary 3.2, we have

αj+1 − αj =
⎧⎪⎪⎨
⎪⎪⎩

log(1/μ̃)
log p

for j = 1 and j = r − 1,

log(1/ν̃)
log p

for 2 � j � r − 2.

(12)
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This is trivial except for j = r−1, where it follows from the identities μ̃ = ν̃/(1− ν̃) and ps−1ν̃r−1 =
(1 − ν̃)2. Therefore,

s − 1 = αr − α1 =
r−1∑
j=1

(αj+1 − αj) = 2 log(1/μ̃)

log p
+ (r − 3) log(1/ν̃)

log p
,

hence

log
1

μ̃
− s − 1

r − 1
log p = r − 3

2

(
s − 1

r − 1
log p − log

1

ν̃

)
.

Combining this with the bounds found in (iii) completes the argument.

(v) By the definition of the αj , we obtain for 2 � j � r − 1

αj(s − 1, r) − (j − 1)
s − 1

r − 1
=

⎛
⎝ log 1

μ̃

log p
− s − 1

r − 1

⎞
⎠ + (j − 2)

(
log 1

ν̃

log p
− s − 1

r − 1

)
.

From (iii) and (iv) it follows that

− 3

2p log p
< αj(s − 1, r) − (j − 1)

s − 1

r − 1
< (j − 2)

3

(r − 1)p log p
<

3

p log p
,

which implies (v) in these cases. Since α1 = 0 and αr = s − 1, the inequality is valid for all j. �

Proposition 4.1(v) reveals that picking the αj for j = 1, . . . , r well-spaced in the interval [0, s− 1],
i.e. αj := (j − 1) s−1

r−1
(see concluding remarks of Section 2), is close to best possible. Since it is our

task to find integral aj in optimal position, it suggests itself to choose the aj as nearest integers to the

αj(s− 1, r) (as defined in Corollary 3.2) or to the numbers (j− 1) s−1
r−1

, which does not makemuch of a

difference by Proposition 4.1(v). Anyway, we shall take aj = ‖αj‖ (1 � j � r) with the nearest integer

function ‖ · ‖ and have to accept variations between αj and aj in the range from − 1
2
to 1

2
. Finally, we

shall try to maximize the energy with respect to r.

We now show that our integral minimummp(s− 1, r), as defined in (3), can be bounded by the real

minimum m̃p(s − 1, r), introduced in (6). In general, that is to say in worst cases, we cannot expect to

lose less than a factor p between the twominima, taking into account that the shifts from real numbers

αj to integral parameters aj , varying over an interval of length up to 1, have to be executed in hp, i.e. in

the exponent of p.

Proposition 4.2. Let 3 � r � s be given integers, and let p be a prime.

(i) Let (α1, . . . , αr) ∈ R
r be the uniqueminimizer of hp determined in Corollary 3.2. Then (a1, . . . , ar)∈ Z

r with the nearest integers aj := ‖αj‖ (1 � j � r) has the property

hp(a1, . . . , ar) �
⎧⎨
⎩ 4 · m̃2(s − 1, r) for p = 2,

p · m̃p(s − 1, r) for p � 3.

(ii) We have m̃2(s − 1, r) � m2(s − 1, r) � 4 · m̃2(s − 1, r).
(iii) For any prime p � 3, we have

m̃p(s − 1, r) � mp(s − 1, r) � p · m̃p(s − 1, r).
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Proof. The lower bounds in (ii) and (iii) are trivial, and the upper bounds follow immediately from the

definition ofmp(s−1, r) in (3). Hence it suffices to prove (i). By Corollary 3.2,we haveαj = αj(s−1, r)
for 1 � j � r and

hp(α1, . . . , αr) = m̃p(s − 1, r).

Since ν̃ := ν̃p(s − 1, r) < 1/p by Proposition 4.1(ii), we have log(1/ν̃) � log p. From Proposition

4.1(i) it follows for p � 3 that μ̃ := μ̃p(s − 1, r) < 1/
√

p, hence log(1/μ̃) > 1
2
log p. By use of (12),

these inequalities imply that α2 > 1
2
, αr−1 < s − 1 − 1

2
and αj+1 � αj + 1 for 2 � j � r − 2.

Moreover, α1 = 0 and αr = s − 1. Therefore, the nearest integers aj := ‖αj‖, 1 � j � r, are pairwise

distinct, forming a strictly increasing sequence. We have aj = αj + δj for suitable real numbers δj
satisfying |δj| � 1/2 (1 � j � r) and obtain

hp(a1, . . . , ar) =
r−1∑
k=1

r∑
i=k+1

1

pai−ak

=
r−1∑
k=1

r∑
i=k+1

1

p(αi−δi)−(αk−δk)
=

r−1∑
k=1

r∑
i=k+1

1

pδk−δi

1

pαi−αk

� p

r−1∑
k=1

r∑
i=k+1

1

pαi−αk
= p · m̃p(s − 1, r).

For the prime p = 2 the above proof has to be modified, since possibly α2 < 1
2
. In this case we choose

a2 = 1 and ar−1 = s − 2. As before, αj+1 � αj + 1 for 2 � j � r − 2. Hence we can select each

aj , 3 � j � r − 2, as one of the neighboring integers of αj in such a way that a1 < a2 < · · · < ar .

It follows in this case that aj = αj + δj for suitable real numbers δj satisfying |δj| � 1 (1 � j � r).

Consequently

h2(a1, . . . , ar) =
r−1∑
k=1

r∑
i=k+1

1

2δk−δi

1

2αi−αk
� 22

r−1∑
k=1

r∑
i=k+1

1

2αi−αk
= 4 · m̃2(s − 1, r). �

Remark. The factor p (or 4 in case p = 2, respectively)we lose between the real minimum m̃2(s−1, r)
and the integral minimum mp(s − 1, r) according to (ii) and (iii) reflects the hypothetical worst case

scenario where each aj differs from αj by
1
2
. In practice, the factor between the two minima will be

substantially smaller in almost all cases.

In Theorem 2.1 the maximal energy Emax(p
s) as well as the corresponding ps-maximal sets are

given for all primes p and each s � 4, and could be determined quite easily for other small values of s

by (2), i.e. Theorem 2.1 in [18]. The inequality

E∗
max(p

s) := Emax(p
s)

2(p − 1)ps−1
� s

is an immediate consequence of Theorem 4.1. The following result shows that this trivial upper bound

lies close to the true value of E∗
max(p

s).
More precisely, part (ii) of the following Theorem 4.2 provides the explicit construction of a divisor

set D0 such that the energy of the graph ICG(ps,D0) falls short of the maximal energy Emax(p
s)

among all integral circulant graphs of order ps essentially by a factor less than 2. The remark preceding

Proposition 4.2 explainswhywe cannot expect to find amore precise lower bound in general. However,

the reader should be aware of the fact that we lose a much smaller factor than 2 between upper and
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lower bound for E∗
max(p

s) in most cases (cf. the remark following Proposition 4.2). We shall comment

on this at the end of the section.

Bound by the tradition of number theory, log will denote the natural logarithm.

Theorem 4.2. Let p be a prime and let s be a positive integer.

(i) We have

C · (s − 1)

(
1 − log log p

log p

)
� E∗

max(p
s) � C · (s − 1)

(
1 − log log p

log p

)
+ 1, (13)

where C = 1 for all p � 3 and C = 1
2
for all p � 17 as well as for 3 � p � 13 in case s � 6. Only

for small values of p, we have exceptional constants C = C(p) and C = C(p), namely C(2) = 0.328,
C(2) = 0.118, and in case s � 7

C(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.030 if p = 3,

0.233 if p = 5,

0.337 if p = 7,

0.442 if p = 11,

0.473 if p = 13.

(ii) Let r0 be the integer uniquely determined by

s − 1

D(p)
� r0 <

s − 1

D(p)
+ 1,

where

D(p) :=
⎧⎪⎪⎨
⎪⎪⎩

4.09184 for p = 2,

2
(
1 + log log p

log p

)
for p � 3,

and define D0 = {p‖αj(s−1,r0)‖ : j = 1, . . . , r0}. For p = 2, s � 11 and for p � 3, s � 7, the

energy of the graph ICG(ps,D0) lies in the same interval as the one established for Emax(p
s) in (13).

Proof. By Theorem 2.1 we have for all primes p

E∗
max(p

s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 for s = 1,

1 + 1
p

for s = 2,

2 − 1
p

+ 1

p2
for s = 3,

2 + 1

p3
for s = 4.

(14)

We leave it to the reader to check that each of these values lies within the respective bounds stated in

(13). We may therefore assume s � 5 in the sequel.

We shall first prove the upper bound in (13). By virtue of (5), it suffices to show that

Emax(p
s, r)

2(p − 1)ps−1
� C · (s − 1)

(
1 − log log p

log p

)
+ 1 (15)
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is satisfied for all 1 � r � s. We distinguish three cases.

Case U1: r = 1.

ByCorollary2.1(i) in [18],wehaveEmax(p
s, 1) = 2(p−1)ps−1 for allp,which implies (15) immediately.

Case U2: r = 2.

It follows from (4) and Proposition 2.1(i) that

Emax(p
s, 2) = 2(p − 1)ps−1

(
2 − (p − 1)

1

ps−1

)
(16)

for all p. Since s � 5, our upper bound in (15) is valid in this case.

Case U3: 3 � r � s.

By Theorem 4.1 and Proposition 4.1(i), we have

Emax(p
s, r) � 2(p − 1)ps−1

⎛
⎝r − (p − 1)(r − 1)

p
s−1
r−1

⎞
⎠ (17)

for all p. Therefore, we study for fixed p and s the real function

g(x) := x − (p − 1)(x − 1)

p
s−1
x−1

on the interval 3 � x � s with boundary values

g(3) = 3 − 2(p − 1)

p
s−1
2

and g(s) = s − 1

p
+ 1 . (18)

For a maximum of g at x0, say, with 3 < x0 < s the derivative

g′(x0) = 1 − p − 1

p
s−1
x0−1

(
1 + (s − 1) log p

x0 − 1

)

vanishes necessarily. Substituting y := s−1
x−1

, hence y � 1, we obtain the condition

1 + y0 log p = py0

p − 1
(19)

for y0 := s−1
x0−1

. Since x0 = 1 + (s − 1)/y0, we conclude for 3 � x � s

g(x) � g(x0) = s − 1

y0

(
1 − p − 1

py0

)
+ 1. (20)

Case U3.1: p = 2.

For p = 2, Eq. (19) has no solution y0 � 1, i.e. in that case the maximum of g is attained at y0 = 1,

that is for x0 = s � 5, which follows by comparison of the boundary values in (18). Therefore we have

in case p = 2

g(x) � g(s) = s − s − 1

2
= s − 1

2
+ 1.

By (17), this immediately implies (15).
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Case U3.2: p � 3.

Now (19) has a unique solution y0 in the interval 1 � y0 < 2, corresponding to the unique maximum

of g. By a few steps of Newton interpolation we obtain for instance that y0 ≈ 1.527 for p = 3 and

y0 ≈ 1.673 for p = 5. We shall verify that

g(x) � (s − 1)

(
1 − log log p

log p

)
+ 1 (21)

on the interval 3 � x � s. This follows easily for p = 3 and p = 5 by inserting the respective values

of y0 given above into (20). For each other fixed prime p � 7, we define the real function

w(y) = wp(y) := py

p − 1
− y log p − 1

for all y � 1. By (19) we know that y0 � 1 satisfies w(y0) = 0. Since the derivative

w′(y) =
(

py

p − 1
− 1

)
log p

is positive for y � 1, the function w(y) is strictly increasing. For

yp := log p

log p − log log p
− 1

log p
,

which is greater than 1 for p � 7, we have

w(yp) = 1

p − 1
p

log p
log p−log log p · e−1 − (log p)2

log p − log log p

= 1

e(p − 1)
p
1+ log log p

log p−log log p − (log p)2

log p − log log p

<
p

e(p − 1)
p

log log p
log p−log log p − log p < 0 ,

where the final inequality is shown to hold for all primes p � 7 by simply taking logarithms in

p

e(p − 1)
p

log log p
log p−log log p < log p .

Since w(y) is strictly increasing on y � 1 and w(yp) < 0, but w(y0) = 0, it follows that yp < y0. By

definition of yp, this inequality implies

log p <

(
1 − log log p

log p

)
(1 + y0 log p).

Multiplying with y0 and dividing by (1 + y0 log p), we obtain by (19)

1 − p − 1

py0
= 1 − 1

1 + y0 log p
< y0

(
1 − log log p

log p

)
.

Inserting this into (20), we have verified (21). By (17), the proof of (15) is complete. Hence the upper

bound in (13) holds in all cases.
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Now we turn our attention to the lower bound for E∗
max(p

s) and distinguish several cases and

subcases.

Case L1: p � 3.

Case L1.1: s � 4.

The lower bound in (13) has already been verified for s � 4 in (14).

Case L1.2: s = 5.

Picking r = 2, we use (16) once more and obtain

E∗
max(p

5) � Emax(p
5, 2)

2(p − 1)p4
= 2 − (p − 1)

1

p4
� 2

(
1 − log log p

log p

)

for all p � 3, which proves the lower bound of (13) in this case.

Case L1.3: s = 6.

It follows from (4) and Proposition 2.1(ii) that

E∗
max(p

6) � Emax(p
6, 3)

2(p − 1)p5
= 3 − (p − 1)

(
1

p2
+ 1

p5
+ 1

p3

)
� 5

2

(
1 − log log p

log p

)

for all p � 3, and again the lower bound in (13) is confirmed.

Case L1.4: s � 7.

We choose the integer r0 according to the inequality

s − 1

2Lp
� r0 <

s − 1

2Lp
+ 1, (22)

where

Lp := 1 + log log p

log p
.

A simple calculation reveals that for s � 7 and all primes p � 3 the expression on the left-hand side

of (22) is always greater than 2. Consequently, 3 � r0 � s − 1. By Corollary 3.2, we have

m̃p(s − 1, r0) = (r0 − 1 + μ̃p(s − 1, r0)) · μ̃p(s − 1, r0), (23)

and from Proposition 4.1(i) and the definition of r0, we get μ̃p(s − 1, r0) < δ + δ2/(1 − δ) for

δ = p−(s−1)/(r0−1) < p−2Lp . Hence

μ̃p(s − 1, r0) <
1

p2Lp

(
1 + 1

p2Lp − 1

)
.

By (23) and (22) we now have

m̃p(s − 1, r0) <

(
s − 1

2Lp
+ 1

p2Lp

(
1 + 1

p2Lp − 1

))
· 1

p2Lp

(
1 + 1

p2Lp − 1

)

<

(
s − 1

2p2LpLp
+ 1

p4Lp

)
· p

p − 1
,

because for p � 3
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1 + 1

p2Lp − 1
<

(
1 + 1

p2Lp − 1

)2

=
(
1 + 1

p2(log p)2 − 1

)2

<

(
1 + 1

(p − 1)(p + 1)

)2

<
p

p − 1
.

Since p � 3, we obtain by Proposition 4.2(iii) that

mp(s − 1, r0) < p · m̃p(s − 1, r0)

<

(
s − 1

2p2LpLp
+ 1

p4Lp

)
· p2

p − 1

=
(

s − 1

2(log p)2Lp
+ 1

p2(log p)4Lp

)
· 1

p − 1
.

According to (4) and (22), it follows that

Emax(p
s, r0)

2(p − 1)ps−1
= r0 − (p − 1)mp(s − 1, r0)

>
s − 1

2Lp
−

(
s − 1

2(log p)2Lp
+ 1

p2(log p)4

)
(24)

>
s − 1

2Lp

(
1 − 1

(log p)2

)
− 1

p2(log p)4
.

It is easy to check that for all primes p � 17

(log log p)2 > 1 + Lp

3(p log p)2
,

and that for 3 � p � 13

(log log p)2 > 1 +
(

1

3(p log p)2
− cp(log p)2

)
Lp

with constants cp defined by the following table:

p cp

3 0.859

5 0.375

7 0.214

11 0.073

13 0.033

Setting cp := 0 for all primes p � 17, the fact that s � 7 implies for all p � 3

(log log p)2 + cp log p Lp > 1 + Lp

3(p log p)2
� 1 + 2Lp

(s − 1)(p log p)2
.
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Dividing by (log p)2, adding 1 on both sides and rearranging terms yields

1 − 1

(log p)2
− 2Lp

(s − 1)p2(log p)4
> 1 −

(
log log p

log p

)2

− cpLp

log p

=
(
1 − log log p

log p

)
Lp − cpLp

log p
.

Dividing by Lp and multiplying with (s − 1)/2 implies

s − 1

2Lp

(
1 − 1

(log p)2

)
− 2

(s − 1)p2(log p)4
>

s − 1

2

(
1 − log log p + cp

log p

)
.

Inserting this inequality into (24) yields

Emax(p
s, r0)

2(p − 1)ps−1
>

s − 1

2

(
1 − log log p + cp

log p

)
,

which completes the proof of the lower bound in (13) for p � 3. At the same time, our construction

combined with Proposition 4.2(i) reveals the truth of statement (ii) for primes p � 3 and s � 7.

Case L2: p = 2.

Case L2.1: s � 4.

The lower bound in (13) follows from (14).

Case L2.2: 5 � s � 10.

Picking r = 3, it follows from (4) and Proposition 2.1(ii) that

E∗
max(2

s) � Emax(2
s, 3)

2s
= 3 −

(
1

2[ s−1
2

] + 1

2s−1
+ 1

2s−1−[ s−1
2

]

)
.

It is easy to check that the last term becomes minimal for s = 5. Hence

E∗
max(2

s) � 3 − 9

16
� 2

11
(s − 1)

for all s in the given range. This confirms the lower bound in (13) for these values of s.

Case L2.3: s � 11.

Let c1 > 1 be the unique real number satisfying c21−6c1+5 = 4c1 log c1, i.e. 17.0517 < c1 < 17.0518,

and let c2 := log c1
log 2

, thus 4.09184 < c2 < 4.09186.Wechoose the integer r2 according to the inequality

s − 1

c2
� r2 <

s − 1

c2
+ 1. (25)

Apparently, the expression on the left-hand side of (25) is always greater than 2 for s � 11. Conse-

quently, 3 � r2 � s − 1. By Corollary 3.2, we have

m̃2(s − 1, r2) = (r2 − 1 + μ̃p(s − 1, r2)) · μ̃p(s − 1, r2), (26)

and from Proposition 4.1(i) and the definition of r2, we get

μ̃p(s − 1, r2) <
1

2c2
+ 1

22c2 − 2c2
= 1

2c2

(
1 + 1

2c2 − 1

)
.
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By (26) and (25) we obtain

m̃2(s − 1, r2) <

(
s − 1

c2
+ 1

2c2

(
1 + 1

2c2 − 1

))
· 1

2c2

(
1 + 1

2c2 − 1

)
.

Proposition 4.2(ii) implies that m2(s − 1, r2) < 4 · m̃2(s − 1, r2), and with (4) and (25) we get

E∗
max(2

s) ≥ Emax(2
s, r2)

2s
= r2 − m2(s − 1, r2)

>
s − 1

c2
− 4

(
s − 1

c2
+ 1

2c2

(
1 + 1

2c2 − 1

))
· 1

2c2

(
1 + 1

2c2 − 1

)

= s − 1

c2

(
1 − 4

2c2

(
1 + 1

2c2 − 1

))
− 4

22c2

(
1 + 1

2c2 − 1

)2

>
s − 1

5.45
− 0.01553 >

2

11
(s − 1)

for s � 11. This proves the lower bound of (13) and completes part (i) of Theorem 4.2. This time our

construction combined with Proposition 4.2(i) shows (ii) for p = 2 and s � 11. �

As an example, the following table illustrates the previous theorem for s = 17 and several small

values of p. Note that r0 will eventually become 8, roughly for p > 1010.

n r0 D0 Lower E∗
max(n) Upper

317 8 (0, 2, 5, 7, 9, 11, 14, 16) 0.439 6.652 15.630

517 7 (0, 3, 5, 8, 11, 13, 16) 2.626 6.547 12.269

717 6 (0, 3, 6, 10, 13, 16) 3.547 5.927 11.526

1117 6 (0, 3, 6, 10, 13, 16) 4.493 5.969 11.164

1317 6 (0, 3, 6, 10, 13, 16) 4.789 5.978 11.124

1717 6 (0, 3, 6, 10, 13, 16) 5.059 5.987 11.119

2317 6 (0, 3, 6, 10, 13, 16) 5.084 5.993 11.169

The lower bounds seem to approximate E∗
max(p

17) with increasing accuracy for growing values of p.

This phenomenon can be observed for other exponents s as well.

Remark

(i) The proof of Theorem 4.2 shows that we lose a factor 2 between lower and upper bound for

E∗
max(p

s) in case p � 17 (and similarly for smaller p) mainly due to the fact that we lose a factor

p between m̃p(s − 1, r) and mp(s − 1, r), which however happens only as an extremely rare

worst case event (cf. Proposition 4.2 and the preceding and subsequent remarks). A straightfor-

ward adaptation of the method introduced in the proof for the lower bound of (13) implies the

following:

Assume that for some fixed sufficiently large p and swe havemp(s− 1, r) � pγ · m̃p(s− 1, r)
with some positive γ < 1. Taking

s + 1

(1 + γ )Lp
� r0 <

s + 1

(1 + γ )Lp
+ 1
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instead of (25), we obtain

1

1 + γ
(s + 1)

(
1 − log log p

log p

)
� E∗

max(p
s) � (s + 1)

(
1 − log log p

log p

)
+ 1.

This reveals that, the smaller the difference between integral and real maximum is, the better

our bounds are. In the extreme case where mp(s − 1, r) = m̃p(s − 1, r), i.e. γ = 0, lower

and upper bound differ only by 1, and the gcd graph with the corresponding divisor set D0 has

maximal energy, because the energy is an integral number, but the two bounds are not.

(ii) It should be noted that even the lower bound of (13) already implies hyperenergeticity in most

cases. A straightforward calculation shows this for e.g. p � 3 and s � 5.

5. Conclusion and open problems

Given a fixed prime power ps, we have provided a method to construct a divisor set D0 with the

property thatE(ps,D0) � 1
2

Emax(p
s). Inmost casesweexpectE(ps,D0) to liemuchcloser toEmax(p

s)
than our worst case inequality guarantees. But since we have used the “real" maximum for reference

it may not be expected to get hold of the “integral" maximum in general, using an analytic approach.

The convexity properties of the function hp also suggest that a divisor set Dmax with E(ps,Dmax) =
Emax(p

s) can be found in the “neighborhood" of our D0. Given an explicit integer ps it should not be

too difficult to determine Emax(p
s) precisely by comparison of a few candidates for a Dmax “near" D0.

Let us conclude this section by posing the challenge of finding similarly accessible bounds on

Emax(n) for integers n which have different prime factors. Even for n = p
s1
1 p

s2
2 with primes p1 �=

p2 and arbitrary divisor sets a closed formula for the energy of the corresponding integral circulant

graphs would be most desirable. Of course, this should then be the basis for analyzing these graphs

for hyperenergeticity.

References

[1] O. Ahmadi, N. Alon, I.F. Blake, I.E. Shparlinski, Graphs with integral spectrum, Linear Algebra Appl. 430 (2009) 547–552.

[2] R. Balakrishnan, The energy of a graph, Linear Algebra Appl. 387 (2004) 287–295.
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