18,773 research outputs found

    A Discrete Geometric Optimal Control Framework for Systems with Symmetries

    Get PDF
    This paper studies the optimal motion control of mechanical systems through a discrete geometric approach. At the core of our formulation is a discrete Lagrange-d’Alembert- Pontryagin variational principle, from which are derived discrete equations of motion that serve as constraints in our optimization framework. We apply this discrete mechanical approach to holonomic systems with symmetries and, as a result, geometric structure and motion invariants are preserved. We illustrate our method by computing optimal trajectories for a simple model of an air vehicle flying through a digital terrain elevation map, and point out some of the numerical benefits that ensue

    Mechanical Systems with Symmetry, Variational Principles, and Integration Algorithms

    Get PDF
    This paper studies variational principles for mechanical systems with symmetry and their applications to integration algorithms. We recall some general features of how to reduce variational principles in the presence of a symmetry group along with general features of integration algorithms for mechanical systems. Then we describe some integration algorithms based directly on variational principles using a discretization technique of Veselov. The general idea for these variational integrators is to directly discretize Hamilton’s principle rather than the equations of motion in a way that preserves the original systems invariants, notably the symplectic form and, via a discrete version of Noether’s theorem, the momentum map. The resulting mechanical integrators are second-order accurate, implicit, symplectic-momentum algorithms. We apply these integrators to the rigid body and the double spherical pendulum to show that the techniques are competitive with existing integrators

    Stochastic Variational Integrators

    Full text link
    This paper presents a continuous and discrete Lagrangian theory for stochastic Hamiltonian systems on manifolds. The main result is to derive stochastic governing equations for such systems from a critical point of a stochastic action. Using this result the paper derives Langevin-type equations for constrained mechanical systems and implements a stochastic analog of Lagrangian reduction. These are easy consequences of the fact that the stochastic action is intrinsically defined. Stochastic variational integrators (SVIs) are developed using a discretized stochastic variational principle. The paper shows that the discrete flow of an SVI is a.s. symplectic and in the presence of symmetry a.s. momentum-map preserving. A first-order mean-square convergent SVI for mechanical systems on Lie groups is introduced. As an application of the theory, SVIs are exhibited for multiple, randomly forced and torqued rigid-bodies interacting via a potential.Comment: 21 pages, 8 figure

    Simulating Nonholonomic Dynamics

    Full text link
    This paper develops different discretization schemes for nonholonomic mechanical systems through a discrete geometric approach. The proposed methods are designed to account for the special geometric structure of the nonholonomic motion. Two different families of nonholonomic integrators are developed and examined numerically: the geometric nonholonomic integrator (GNI) and the reduced d'Alembert-Pontryagin integrator (RDP). As a result, the paper provides a general tool for engineering applications, i.e. for automatic derivation of numerically accurate and stable dynamics integration schemes applicable to a variety of robotic vehicle models

    Geometric, Variational Discretization of Continuum Theories

    Full text link
    This study derives geometric, variational discretizations of continuum theories arising in fluid dynamics, magnetohydrodynamics (MHD), and the dynamics of complex fluids. A central role in these discretizations is played by the geometric formulation of fluid dynamics, which views solutions to the governing equations for perfect fluid flow as geodesics on the group of volume-preserving diffeomorphisms of the fluid domain. Inspired by this framework, we construct a finite-dimensional approximation to the diffeomorphism group and its Lie algebra, thereby permitting a variational temporal discretization of geodesics on the spatially discretized diffeomorphism group. The extension to MHD and complex fluid flow is then made through an appeal to the theory of Euler-Poincar\'{e} systems with advection, which provides a generalization of the variational formulation of ideal fluid flow to fluids with one or more advected parameters. Upon deriving a family of structured integrators for these systems, we test their performance via a numerical implementation of the update schemes on a cartesian grid. Among the hallmarks of these new numerical methods are exact preservation of momenta arising from symmetries, automatic satisfaction of solenoidal constraints on vector fields, good long-term energy behavior, robustness with respect to the spatial and temporal resolution of the discretization, and applicability to irregular meshes

    Nonsmooth Lagrangian mechanics and variational collision integrators

    Get PDF
    Variational techniques are used to analyze the problem of rigid-body dynamics with impacts. The theory of smooth Lagrangian mechanics is extended to a nonsmooth context appropriate for collisions, and it is shown in what sense the system is symplectic and satisfies a Noether-style momentum conservation theorem. Discretizations of this nonsmooth mechanics are developed by using the methodology of variational discrete mechanics. This leads to variational integrators which are symplectic-momentum preserving and are consistent with the jump conditions given in the continuous theory. Specific examples of these methods are tested numerically, and the long-time stable energy behavior typical of variational methods is demonstrated
    corecore