247 research outputs found

    Adversarial Wiretap Channel with Public Discussion

    Full text link
    Wyner's elegant model of wiretap channel exploits noise in the communication channel to provide perfect secrecy against a computationally unlimited eavesdropper without requiring a shared key. We consider an adversarial model of wiretap channel proposed in [18,19] where the adversary is active: it selects a fraction ρr\rho_r of the transmitted codeword to eavesdrop and a fraction ρw\rho_w of the codeword to corrupt by "adding" adversarial error. It was shown that this model also captures network adversaries in the setting of 1-round Secure Message Transmission [8]. It was proved that secure communication (1-round) is possible if and only if ρr+ρw<1\rho_r + \rho_w <1. In this paper we show that by allowing communicants to have access to a public discussion channel (authentic communication without secrecy) secure communication becomes possible even if ρr+ρw>1\rho_r + \rho_w >1. We formalize the model of \awtppd protocol and for two efficiency measures, {\em information rate } and {\em message round complexity} derive tight bounds. We also construct a rate optimal protocol family with minimum number of message rounds. We show application of these results to Secure Message Transmission with Public Discussion (SMT-PD), and in particular show a new lower bound on transmission rate of these protocols together with a new construction of an optimal SMT-PD protocol

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Information-theoretic Physical Layer Security for Satellite Channels

    Full text link
    Shannon introduced the classic model of a cryptosystem in 1949, where Eve has access to an identical copy of the cyphertext that Alice sends to Bob. Shannon defined perfect secrecy to be the case when the mutual information between the plaintext and the cyphertext is zero. Perfect secrecy is motivated by error-free transmission and requires that Bob and Alice share a secret key. Wyner in 1975 and later I.~Csisz\'ar and J.~K\"orner in 1978 modified the Shannon model assuming that the channels are noisy and proved that secrecy can be achieved without sharing a secret key. This model is called wiretap channel model and secrecy capacity is known when Eve's channel is noisier than Bob's channel. In this paper we review the concept of wiretap coding from the satellite channel viewpoint. We also review subsequently introduced stronger secrecy levels which can be numerically quantified and are keyless unconditionally secure under certain assumptions. We introduce the general construction of wiretap coding and analyse its applicability for a typical satellite channel. From our analysis we discuss the potential of keyless information theoretic physical layer security for satellite channels based on wiretap coding. We also identify system design implications for enabling simultaneous operation with additional information theoretic security protocols

    An Adversarial Learning Framework for Privacy Preserving Communications

    Get PDF
    We develop a machine learning-based approach that allows to achieve privacy in communications by exploiting an advantage at the physical layer. Our goal is to transmit useful data to the intended receiver while preventing sensitive data from leaking to an eavesdropper who has access to the channel. We adopt an adversarial approach involving two competing neural networks to learn efficient coding schemes that allow to regulate the tradeoff between quality and privacy.ope

    Derandomizing Codes for the Binary Adversarial Wiretap Channel of Type II

    Full text link
    We revisit the binary adversarial wiretap channel (AWTC) of type II in which an active adversary can read a fraction rr and flip a fraction pp of codeword bits. The semantic-secrecy capacity of the AWTC II is partially known, where the best-known lower bound is non-constructive, proven via a random coding argument that uses a large number (that is exponential in blocklength nn) of random bits to seed the random code. In this paper, we establish a new derandomization result in which we match the best-known lower bound of 1H2(p)r1-H_2(p)-r where H2()H_2(\cdot) is the binary entropy function via a random code that uses a small seed of only O(n2)O(n^2) bits. Our random code construction is a novel application of pseudolinear codes -- a class of non-linear codes that have kk-wise independent codewords when picked at random where kk is a design parameter. As the key technical tool in our analysis, we provide a soft-covering lemma in the flavor of Goldfeld, Cuff and Permuter (Trans. Inf. Theory 2016) that holds for random codes with kk-wise independent codewords

    Jamming Games in the MIMO Wiretap Channel With an Active Eavesdropper

    Full text link
    This paper investigates reliable and covert transmission strategies in a multiple-input multiple-output (MIMO) wiretap channel with a transmitter, receiver and an adversarial wiretapper, each equipped with multiple antennas. In a departure from existing work, the wiretapper possesses a novel capability to act either as a passive eavesdropper or as an active jammer, under a half-duplex constraint. The transmitter therefore faces a choice between allocating all of its power for data, or broadcasting artificial interference along with the information signal in an attempt to jam the eavesdropper (assuming its instantaneous channel state is unknown). To examine the resulting trade-offs for the legitimate transmitter and the adversary, we model their interactions as a two-person zero-sum game with the ergodic MIMO secrecy rate as the payoff function. We first examine conditions for the existence of pure-strategy Nash equilibria (NE) and the structure of mixed-strategy NE for the strategic form of the game.We then derive equilibrium strategies for the extensive form of the game where players move sequentially under scenarios of perfect and imperfect information. Finally, numerical simulations are presented to examine the equilibrium outcomes of the various scenarios considered.Comment: 27 pages, 8 figures. To appear, IEEE Transactions on Signal Processin
    corecore