4,067 research outputs found

    Cartesian product of hypergraphs: properties and algorithms

    Full text link
    Cartesian products of graphs have been studied extensively since the 1960s. They make it possible to decrease the algorithmic complexity of problems by using the factorization of the product. Hypergraphs were introduced as a generalization of graphs and the definition of Cartesian products extends naturally to them. In this paper, we give new properties and algorithms concerning coloring aspects of Cartesian products of hypergraphs. We also extend a classical prime factorization algorithm initially designed for graphs to connected conformal hypergraphs using 2-sections of hypergraphs

    Packing chromatic vertex-critical graphs

    Full text link
    The packing chromatic number χρ(G)\chi_{\rho}(G) of a graph GG is the smallest integer kk such that the vertex set of GG can be partitioned into sets ViV_i, i[k]i\in [k], where vertices in ViV_i are pairwise at distance at least i+1i+1. Packing chromatic vertex-critical graphs, χρ\chi_{\rho}-critical for short, are introduced as the graphs GG for which χρ(Gx)<χρ(G)\chi_{\rho}(G-x) < \chi_{\rho}(G) holds for every vertex xx of GG. If χρ(G)=k\chi_{\rho}(G) = k, then GG is kk-χρ\chi_{\rho}-critical. It is shown that if GG is χρ\chi_{\rho}-critical, then the set {χρ(G)χρ(Gx): xV(G)}\{\chi_{\rho}(G) - \chi_{\rho}(G-x):\ x\in V(G)\} can be almost arbitrary. The 33-χρ\chi_{\rho}-critical graphs are characterized, and 44-χρ\chi_{\rho}-critical graphs are characterized in the case when they contain a cycle of length at least 55 which is not congruent to 00 modulo 44. It is shown that for every integer k2k\ge 2 there exists a kk-χρ\chi_{\rho}-critical tree and that a kk-χρ\chi_{\rho}-critical caterpillar exists if and only if k7k\le 7. Cartesian products are also considered and in particular it is proved that if GG and HH are vertex-transitive graphs and diam(G)+diam(H)χρ(G){\rm diam(G)} + {\rm diam}(H) \le \chi_{\rho}(G), then GHG\,\square\, H is χρ\chi_{\rho}-critical
    corecore