60 research outputs found

    On the approximability of robust spanning tree problems

    Get PDF
    In this paper the minimum spanning tree problem with uncertain edge costs is discussed. In order to model the uncertainty a discrete scenario set is specified and a robust framework is adopted to choose a solution. The min-max, min-max regret and 2-stage min-max versions of the problem are discussed. The complexity and approximability of all these problems are explored. It is proved that the min-max and min-max regret versions with nonnegative edge costs are hard to approximate within O(log1ϵn)O(\log^{1-\epsilon} n) for any ϵ>0\epsilon>0 unless the problems in NP have quasi-polynomial time algorithms. Similarly, the 2-stage min-max problem cannot be approximated within O(logn)O(\log n) unless the problems in NP have quasi-polynomial time algorithms. In this paper randomized LP-based approximation algorithms with performance ratio of O(log2n)O(\log^2 n) for min-max and 2-stage min-max problems are also proposed

    Making Robust Decisions in Discrete Optimization Problems as a Game against Nature

    Get PDF
    In this paper a discrete optimization problem under uncertainty is discussed. Solving such a problem can be seen as a game against nature. In order to choose a solution, the minmax and minmax regret criteria can be applied. In this paper an extension of the known minmax (regret) approach is proposed. It is shown how different types of uncertainty can be simultaneously taken into account. Some exact and approximation algorithms for choosing a best solution are constructed.Discrete optimization, minmax, minmax regret, game against nature
    corecore