21,179 research outputs found

    The safety case and the lessons learned for the reliability and maintainability case

    Get PDF
    This paper examine the safety case and the lessons learned for the reliability and maintainability case

    Curvature-Constrained Estimates of Technical Efficiency and Returns to Scale for U.S. Electric Utilities

    Get PDF
    We estimate an input distance function for U.S. electric utilities under the assumption that non-negative variables associated with technical inefficiency are timeinvariant. We use Bayesian methodology to impose curvature restrictions implied by microeconomic theory and obtain exact finite-sample results for nonlinear functions of the parameters (eg. technical efficiency scores). We find that Bayesian point estimates of elasticities are more plausible than maximum likelihood estimates, technical efficiency scores from a random effects specification are higher than those obtained from a fixed effects model, and there is evidence of increasing returns to scale in the industry.

    Multi-Layer Cyber-Physical Security and Resilience for Smart Grid

    Full text link
    The smart grid is a large-scale complex system that integrates communication technologies with the physical layer operation of the energy systems. Security and resilience mechanisms by design are important to provide guarantee operations for the system. This chapter provides a layered perspective of the smart grid security and discusses game and decision theory as a tool to model the interactions among system components and the interaction between attackers and the system. We discuss game-theoretic applications and challenges in the design of cross-layer robust and resilient controller, secure network routing protocol at the data communication and networking layers, and the challenges of the information security at the management layer of the grid. The chapter will discuss the future directions of using game-theoretic tools in addressing multi-layer security issues in the smart grid.Comment: 16 page

    Is There Still Merit in the Merit Order Stack? The Impact of Dynamic Constraints on Optimal Plant Mix

    Get PDF

    Using a high fidelity CCGT simulator for building prognostic systems

    Get PDF
    Pressure to reduce maintenance costs in power utilities has resulted in growing interest in prognostic monitoring systems. Accurate prediction of the occurrence of faults and failures would result not only in improved system maintenance schedules but also in improved availability and system efficiency. The desire for such a system has driven research into the emerging field of prognostics for complex systems. At the same time there is a general move towards implementing high fidelity simulators of complex systems especially within the power generation field, with the nuclear power industry taking the lead. Whilst the simulators mainly function in a training capacity, the high fidelity of the simulations can also allow representative data to be gathered. Using simulators in this way enables systems and components to be damaged, run to failure and reset all without cost or danger to personnel as well as allowing fault scenarios to be run faster than real time. Consequently, this allows failure data to be gathered which is normally otherwise unavailable or limited, enabling analysis and research of fault progression in critical and high value systems. This paper presents a case study of utilising a high fidelity industrial Combined Cycle Gas Turbine (CCGT) simulator to generate fault data, and shows how this can be employed to build a prognostic system. Advantages and disadvantages of this approach are discussed

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Nuclear Power: a Hedge against Uncertain Gas and Carbon Prices?

    Get PDF
    High fossil fuel prices have rekindled interest in nuclear power. This paper identifies specific nuclear characteristics making it unattractive to merchant generators in liberalised electricity markets, and argues that non-fossil fuel technologies have an overlooked à ¢à  à  option valueà ¢à  à  given fuel and carbon price uncertainty. Stochastic optimisation estimates the company option value of keeping open the choice between nuclear and gas technologies. This option value decreases sharply as the correlation between electricity, gas, and carbon prices rises, casting doubt on whether private investorsà ¢à  à  fuel-mix diversification incentives in electricity markets are aligned with the social value of a diverse fuel-mix
    corecore