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Abstract:  We estimate an input distance function for U.S. electric utilities under the 

assumption that non-negative variables associated with technical inefficiency are time-

invariant.  We use Bayesian methodology to impose curvature restrictions implied by 

microeconomic theory and obtain exact finite-sample results for nonlinear functions of the 

parameters (eg. technical efficiency scores).  We find that Bayesian point estimates of 

elasticities are more plausible than maximum likelihood estimates, technical efficiency scores 

from a random effects specification are higher than those obtained from a fixed effects model, 

and there is evidence of increasing returns to scale in the industry.  

 

Keywords: Input Distance Function, Stochastic Frontier, Bayes, Markov Chain Monte Carlo 



 

 

2

1.  Introduction  

 
The stochastic frontier models proposed independently by Aigner, Lovell and Schmidt (1977) 

and Meeusen and van den Broeck (1977) provide the foundation for the econometric 

measurement of technical inefficiency.  These early models were estimated using cross-section 

data under the assumption that non-negative random variables representing technical 

inefficiency were half-normally or exponentially distributed.  Subsequently, efficiency and 

productivity researchers have considered several alternative distributional assumptions (see 

Stevenson , 1980; Greene, 1990) and developed a range of models for use with panel data (see 

Pitt and Lee, 1981; Schmidt and Sickles, 1984).  Some panel data models allow technical 

inefficiency effects to vary across firms but not over time; others allow technical inefficiency 

effects to vary both across firms and over time.  Empirical examples of these panel data models 

include Battese and Coelli (1988), Battese, Coelli and Colby (1989), Cornwell, Schmidt and 

Sickles (1990), Kumbhakar (1990), Battese and Coelli (1992) and Lee and Schmidt (1993).   

 Most of this empirical work has been conducted in a sampling theory (or frequentist) 

estimation framework (esp. maximum likelihood).  More recently, econometricians have begun 

to estimate frontier models in a Bayesian framework.  A comprehensive introduction to 

Bayesian methods in econometrics is provided by Koop (2003) and a comparison of sampling 

theory and Bayesian approaches to inference is provided by Poirier (1995).  For stochastic 

frontier researchers, a particular advantage of the Bayesian approach is that it can provide exact 

finite sample results for nonlinear functions of the unknown parameters (eg. technical 

efficiency scores).  In addition, Bayesians have formal mechanisms for incorporating non-

sample information (eg. curvature restrictions implied by economic theory) into the estimation 

process.  

Until recently, the Bayesian approach has not been widely used for estimating 

stochastic frontiers, partly because it involves the evaluation of analytically intractable 



 

 

3

integrals.  However, recent advances in computer power and simulation methods for evaluating 

integrals have led to renewed interest in the approach.  The most important algorithms used for 

stochastic frontier analysis are Markov Chain Monte Carlo (MCMC) algorithms such as the 

Gibbs sampler.  MCMC algorithms have been used to estimate stochastic frontier models by 

van den Broeck et al (1994), Koop, Steel, Osiewalski (1995), Koop, Osiewalski and Steel 

(1997), Osiewalski and Steel (1998) and Koop and Steel (2001).  More recently, O’Donnell 

and Coelli (2004) have shown how MCMC methods can be used to impose regularity 

conditions on the parameters of a translog output distance function. 

Distance functions are one way of representing a well-behaved multi-input multi-output 

production technology.  Empirical researchers find them useful because they do not require 

behavioral assumptions such as cost minimization or profit maximization.  Among other 

things, this means distance functions can be used to represent the production technologies of 

most network industries (eg. utilities and transport) where regulation may make such 

assumptions inappropriate.  Two types of distance function have received significant attention 

in the literature: an input distance function describes the maximum proportional contraction of 

the input vector that is possible without changing the output vector; an output distance function 

describes the degree to which a firm can expand its output vector, given an input vector.  

Distance functions have been estimated by Färe et al. (1993), Grosskopf et al. (1995), Coelli 

and Perelman (1999), Atkinson and Primont (2002) and O’Donnell and Coelli (2004), among 

others.  In this paper we estimate an input distance function for U.S. electric utilities.  An input 

distance function is estimated instead of an output distance function because electric utilities 

tend to adjust their inputs to produce exogenously-determined levels of electricity output. 

Electricity is generated in the U.S. using a variety of different technologies and fuels.  

According to the Energy Information Administration (EIA), steam electric power generation 

accounted for 61 percent of U.S. electricity generated in 1998.  Nuclear power generation is the 
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second largest sector of the industry and accounts for nearly 19 percent of generation capacity.  

The remaining power generation is from hydroelectric (9 percent) and non-utility (12 percent) 

sources.   

In recent years, Atkinson and Primont (2002) and Rungsuriyawiboon and Stefanou 

(2003) have used data from major investor-owned utilities to estimate the cost structure and 

other economic characteristics of steam electric power generators.  Economic characteristics of 

nuclear power generators have been estimated by Krautmann and Solow (1988), Marshall and 

Navarro (1991) and Canterbery, Johnson, and Reading (1996), but these studies are somewhat 

dated and/or relatively limited in scope.  In this paper we use panel data from 26 utilities over 

the period 1989 to 1998 to estimate characteristics of the nuclear power generation technology, 

including estimates of technical inefficiency.  Thus, the results reported in this study 

complement the estimates reported by Atkinson and Primont (2002) and Rungsuriyawiboon 

and Stefanou (2003).  Our study is timely because electricity restructuring and deregulation is 

now on the policy agenda in most states of the U.S. 

The structure of the paper is as follows.  We begin by defining the input distance 

function and its theoretical properties.  We then consider the translog input distance function 

and the parametric restrictions implied by the properties of homogeneity, monotonicity and 

curvature.  Next we consider Bayesian methods for estimating the model under the 

assumptions that variables representing technical inefficiency are either fixed or random. We 

then describe the data before presenting the empirical results.  In the concluding section we 

make some comments on the benefits of using a Bayesian approach. 

 



 

 

5

2.  The Input Distance Function 

 
We consider a multi-input, multi-output production technology where a firm uses a non-

negative 1×K  input vector ( )′= KXXX ,...,1  to produce a non-negative 1×M  output vector 

( )1,..., MQ Q Q ′= . The set of all technologically feasible input-output combinations is S = {(X, 

Q): X can produce Q}.  We assume this production technology satisfies the standard properties 

discussed in Färe and Primont (1995). 

 The production technology can also be described in terms of input sets and distance 

functions.  Specifically, the input set L(Q) is the set of all input vectors, X, that can produce the 

output vector, Q: 

 L(Q) = { X : X can produce Q}.       (1) 

The input distance function can be defined in terms of this input set as 

 ( ) ( ) ( ){ }, max :ID X Q X L Qρ ρ= ∈       (2) 

and gives the maximum proportional reduction in inputs that is possible without changing the 

output vector.  Both the input set and the input distance function summarize all the 

economically-relevant characteristics of the production technology.   

It is clear that if ( )X L Q∈  then ( ), 1ID X Q ≥ .  Moreover, ( ), 1ID X Q =  if X belongs 

to the 'frontier' of the input set.  Finally, the input distance function is non-decreasing, linearly 

homogenous and concave in X, and non-increasing and quasi-concave in Q.  In this paper we 

aim to estimate the parameters of a translog input distance function in a manner consistent with 

these properties.  
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3.  The Translog Functional Form 

 
To estimate the parameters of an input distance function we must first specify a functional 

form.  The translog functional form is a quadratic in logarithms and can provide a second-order 

approximation to an arbitrary functional form.  When defined over K inputs and M outputs the 

translog input distance function is: 
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where the αs, βs and γs are unknown parameters to be estimated.  The second-order parameters 

satisfy the identifying restrictions βkl = βlk and αkl = αlk for all k and l (these restrictions also 

ensure the function satisfies the symmetry restrictions implied by Young's Theorem).   

 

4.  Homogeneity, Monotonicity and Curvature Constraints 

 
As we have seen, the input distance function is non-decreasing, linearly homogenous and 

concave in X, and non-increasing and quasi-concave in Q.  These properties imply a number of 

equality and inequality constraints on the unknown parameters in the translog function (3).  

Sufficient conditions for the function (3) to be homogeneous of degree one in inputs are 
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These are equality constraints on the unknown parameters and, because they do not involve the 

data, they are observation-invariant.  In contrast, the non-increasing and non-decreasing 

properties of the distance function (ie. monotonicity properties) will be satisfied if and only if 
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and 
1 1

0
I M K

m mn n km k
n km

d q x
q

α α γ
= =

∂
= + + ≤

∂ ∑ ∑        (6) 

where Id = ln ID , xk = ln Xk and qm = ln Qm.  These are inequality constraints involving both 

the parameters and the data, so they are observation-varying. 

For the concavity property we let klH h⎡ ⎤= ⎣ ⎦  be the Hessian matrix of the translog 

input distance function, with elements 
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where 1=klδ  if lk =  and 0 otherwise. The function (3) will be concave in inputs over the 

nonnegative orthant if and only if H is negative semi-definite.  In turn, H will be negative semi-

definite if and only if every principal minor of odd order is non-positive and every principal 

minor of even order is non-negative (Simon and Blume, 1994, p.383). 

 Finally, for the quasi-concavity property we define the bordered Hessian matrix 
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where  
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The function (3) will be quasi-concave in outputs over the nonnegative orthant if the first 

principal minor of F is negative and the remaining principal minors alternate in sign (Simon 

and Blume, 1994, p.530). 
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5.  Elasticities of Scale and Substitution 

 
Atkinson and Primont (2002) consider the duality between cost and input distance functions 

and define two quantities of economic interest.  First, they show that a measure of returns to 

scale can be obtained from the input distance function as 

 1
( , ) 'I

Q

RTS
D X Q Q

= −
∇

              (11) 

where ( , )I
QD X Q∇ is the vector of first derivatives of the distance function with respect to 

outputs.  Values of the RTS greater than one imply increasing returns to scale, values less than 

one imply decreasing returns to scale, while a value of one implies constant returns to scale. 

Second, the first partial derivative of the log-distance with respect to the k-th log-input:   

 
I I

k
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k k

Xd D
x D X

∂ ∂
=

∂ ∂
                  (12) 

can be interpreted as an implicit input value share for the k-th input.  Ratios of these derivatives 

provide a unit-less measure of input substitutability. 

 

6.  Estimation  

 
For estimation purposes it is convenient to impose the homogeneity constraints (4) by 

normalizing all inputs by the K-th input.  Then the translog input distance function (3) can be 

rewritten as 
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where ( )* lnkit kit Kitx X X=  is the k-th normalized input, I
it itu d=  is a non-negative term 

capturing the effects of technical inefficiency, and the subscripts i and t have been introduced 

to index firms and time periods respectively (i = 1, ..., N; t = 1, ..., T).   

In this paper we assume iit uu =  (ie. the technical inefficiency effects are time-

invariant) and write (13) in the more compact form: 

 0it it it iy z v uβ φ′= + + − ,                 (14) 

where Kitit xy −= , itz  is a 1×P  vector of the logarithms of normalized inputs and outputs and 

their cross-products, φ  is 1×P  vector of parameters, and ( )1~ 0,itv N h−  is an independent 

normally distributed random error term introduced to represent statistical noise.  Equation (14) 

is recognizable as a standard stochastic frontier model for panel data with time-invariant 

technical inefficiency effects.  Models of this type are usually estimated under the assumption 

that the ui are either fixed parameters (the so-called fixed effects model) or random variables 

(the random effects model).   

 Irrespective of whether the inefficiency effects are treated as fixed or random, the 

parameters of the distance function can be estimated in either a sampling theory or Bayesian 

framework.  The optimal sampling theory point estimates are usually those that maximize the 

value of the likelihood function, while the optimal Bayesian point estimates are usually the 

means of posterior probability density functions (pdfs) that summarize all the post-sample 

information we have about the unknown parameters.  Formally, Bayes’s Theorem states that 

 p(θ |data) ∝  p(data |θ) p(θ )                 (15) 

where p(θ |data) is the posterior pdf of the unknown parameter vector θ ,  p(data |θ) is the 

familiar likelihood function, p(θ ) is a prior pdf summarizing all our pre-sample knowledge 

about θ , and ∝  is notation for “is proportional to”.  The joint posterior pdf is the main focus 

of Bayesian inference – it underpins the evaluation of competing hypotheses and point and 
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interval estimation of all parameters.  For example, when interest centres on a single element of 

θ , say iθ , we obtain its marginal posterior pdf by integrating the joint posterior pdf with 

respect to all elements of θ  other than iθ .  The mean of this marginal posterior pdf is the 

optimal Bayesian point estimate of the parameter (under quadratic loss). 

 Integrating multivariate joint posterior pdfs is often analytically difficult, if not 

impossible.  In practice, this obstacle is overcome using Markov Chain Monte Carlo (MCMC) 

simulation techniques.  Specifically, an MCMC posterior simulator is used to generate draws 

from the posterior, p(θ |data), and this sample of draws is then used to estimate any interesting 

characteristics of the marginal pdfs (eg, means, standard errors).   Details of particular MCMC 

simulators will be provided below. 

  

The Fixed Effects Model 

 
If the inefficiency component in equation (14) is treated as a fixed parameter then the T 

observations on the i-th firm can be compactly written: 

 '
i i T i iy j Z vψ φ= + +                   (16) 

where 0i iuψ β= −  is the i-th individual effect, ( )1,...,i i iTy y y ′=  and ( )1,...,i i iTv v v ′= are 1T × , 

( )1,...,i i iTZ z z ′=  is T P× , and jT is  a 1T ×  vector of ones.  Moreover, the full set of NT 

observations can be written: 

 ( )N Ty I j Z v W vψ φ θ= ⊗ + + = + .                (17) 

where ( )′′′= Nyyy ,...,1  and ( )′′′= Nvvv ,...,1  are 1×NT , ( )′′′= NZZZ ,...,1  is PNT × , 

( )ZjIW TN ,⊗=  is ( )PNNT +× , ( )1,..., Nψ ψ ψ ′′ ′=  is N × 1  and ( ),θ ψ φ ′′ ′=  is ( ) 1×+ PN .   
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The sampling theory approach to estimating the parameters of this fixed effects model 

is quite straightforward – sampling theorists simply find the parameter values that maximize 

the likelihood function:  

 ( )hyp ,θ ∝ ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −′

′
−+−× − θθθθυ ˆˆˆ5.0exp 12 WWhhhNT              (18) 

where ( ) yWWW ′′= −1θ̂  is the least squares estimator, ( ) ( ) υθθ ⎥⎦
⎤

⎢⎣
⎡ −

′
−=− ˆˆˆ 1 WyWyh  and 

( ) PTN −−= 1υ .  The maximum likelihood estimator of θ is clearly the least squares 

estimator. 

 Bayesian estimation of the model is slightly more complicated.  In this paper we adopt 

the prior pdfs: 

 ( ) ( )p I Rθ θ∝ ∈                   (19) 

and ( )hp ∝ 1−h                    (20) 

where ( )I Rθ ∈  is an indicator function and R  is the region of the parameter space where the 

economic regularity constraints implied by economic theory hold.  Thus, ( )I Rθ ∈  will take the 

value one if the stochastic input distance function satisfies the monotonicity and curvature 

conditions discussed in Section 4, and will take the value zero otherwise. Equations (19) and 

(20) are noninformative apart from the regularity constraints provided by economic theory.   

 Equations (19) and (20) imply a joint prior pdf of the form 

 ( ),p hθ ∝ 1 ( )h I Rθ− × ∈                  (21) 

Bayes’s Theorem (ie. equation 15) is used to combine this joint prior with the likelihood 

function (18) to obtain the joint posterior pdf 

 ( )yhp ,θ ∝ ( )hyp ,θ ( ),p hθ   

 ∝ ( ) ( ) ( )RIWWhhhNT ∈×
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −′

′
−+−× −− θθθθθυ ˆˆˆ5.0exp 112 .     (22)  
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The parameter h is of little interest (Bayesians refer to it as a “nuisance” parameter) so it is 

usually integrated out of (22) to yield the marginal posterior pdf for θ: 

 ( )yp θ ∝ ( ) ( ){ } ( )RIWyWy
NT

∈×−′−
−

θθθ
2

.               (23) 

If we are interested in characteristics of the marginal posterior pdf of a particular element of θ  

then we need to further integrate (23) using MCMC simulation.  The particular MCMC 

algorithm we use in this paper is a random-walk Metropolis-Hastings (M-H) algorithm – 

details are available in Chen, Shao and Ibrahim (2000).  To implement the M-H algorithm we 

use a multivariate normal proposal density with covariance matrix equal to a tuning scalar 

multiplied by the maximum likelihood estimate of the covariance matrix of the parameters.  

Following the work of Roberts, Gelman and Gilks (1997), the tuning scalar is set so that the 

optimal acceptance rate lies between 0.23 and 0.45.   

 MCMC draws from the posterior pdf (23) can be used to estimate the marginal 

posterior pdf of functions of θ , including the following measure of relative technical 

efficiency: 

 ( )( ) ( )( )exp min exp mini j j i j j iRTE u uψ ψ= − = − .              (24) 

RTEi represents the efficiency of firm i  relative to the most efficient firm in the sample, and its 

value ranges between 0 and 1. 

 

The Random Effects Model 

 
We can also treat the inefficiency component in equation (14) as a random variable.  In this 

case the T observations on the i-th firm can be compactly written as: 

 i i i i Ty X v u jβ= + − ,                  (26) 
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where ( )iTi ZjX ,=  is ( )1+× PT  and ( )0 ,β β φ ′′=  is ( ) 11 ×+P .  The full set of NT 

observations can then be written: 

 ( )N Ty X v I j uβ= + − ⊗ ,                 (27) 

where ( )′′′= NXXX ,...,1  is ( )1+× PNT  and ( )′= Nuuu ,...,1  is 1×N .   

 Various distributional assumptions for the inefficiency term have been used in the 

literature.  In this paper we assume the ui are i.i.d. exponential random variables with pdf 

 ( ) ( ) ( )1 1 1, 2 expi G i ip u f u uλ λ λ λ− − −= = −                 (25) 

 The likelihood function for this exponential model can be maximized numerically using 

programs such as LIMDEP (Greene, 2002).  Following estimation, the technical efficiencies of 

each firm in each year can be estimated by substituting the parameter estimates into an 

expression for the conditional expectation E{ ( )exp iu− | ( )it iv u− }.  Since iu  is a non-negative 

random variable, these technical efficiency estimates lie between 0 and 1, with a value of 1 

indicating full technical efficiency. 

 For Bayesian analysis we specify the following prior pdfs for the unknown parameters 

β, h and λ: 

 ( ) ( )p I Rβ β∝ ∈                   (28) 

 ( )hp ∝ 1−h .                   (29) 

and ( )1−λp ∝ ( )( ) ( )( )1 * *1/ ln , 2 exp ln /Gf λ τ τ λ− − ∝ .              (30) 

where *τ  is the prior median of the efficiency distribution.  The prior (30) is a proper prior  (ie. 

integrates to one) that ensures the posterior pdf is also proper – see Fernandez, Osiewalski and 

Steel (1997).  Treating the inefficiency effects as unknown parameters, the joint prior pdf is  

 ( )1,,, −λβ uhp  ∝ ( ) ( ) ( ) ( )1 1p p h p u pβ λ λ− −  
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   = ( )( ) ( )1 1 *

1

( ) 1/ ln , 2 ,2
N

G G i
i

h I R f f uβ λ τ λ− −

=

× ∈ × − ×∏            (31) 

As usual, this prior pdf can be combined with the likelihood function to obtain a posterior pdf  

( )yuhp 1,,, −λβ  and, once more, we can obtain marginal posterior pdfs using MCMC 

simulation.  In the case of the random effects model it is convenient to do posterior simulation 

using a Gibbs sampler with data augmentation – see Chen, Shao and Ibrahim (2000).   This 

involves drawing iteratively from the following conditional posterior pdfs: 

 ( ) ( )( )1 1 *, , , 1/ ln( ) , 2( 1)G Np y h u f N u j Nλ β λ τ− − ′∝ + − +                         (32) 

 ( )1,,, −λβ uyhp ∝ ( ) ( )/ ,G N T N Tf h NT y X I j u y X I j u NTβ β⎛ ⎞′− + ⊗ − + ⊗⎡ ⎤ ⎡ ⎤⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠
 (33)  

 ( )1,,, −λβ uhyp ∝ ( )( ) ( )RIXXhbfN ∈×′ −− ββ 11, ,                  (34)         

 ( )1, , ,ip u y hβ λ − ∝ ( ) ( )( ) ( )1 1, 0N i i i if u y X Th Th I uβ λ − −′− + × ≥ ,                 (35) 

where ( ) ( )1
N Tb X X X y I j u−′ ′= + ⊗⎡ ⎤⎣ ⎦  is ( ) 11 ×+P , (1/ )i T iX T j X′=  is ( )11 +× P  and 

( ) iTi yjTy ′= 1  is a scalar.  Draws from these pdfs can be shown to converge to draws from the 

posterior pdf ( )yuhp 1,,, −λβ .   

 Drawing random numbers from the conditional posteriors (32) and (33) is 

straightforward using standard non-iterative methods.  Drawing from the conditional posteriors 

(34) and (35) can be accomplished using accept-reject methods or using an M-H algorithm.  

Following estimation, draws on the ui can be used to obtain estimates of (characteristics) of the 

marginal posterior pdf of the measure of technical efficiency: 

 TEi = exp(-ui)          (36) 

 



 

 

15

7.  Data  

 
We estimated the fixed and random effects models using panel data from 1989-1998 on 26 

major investor-owned U.S. nuclear power electric utilities.  The primary sources of the data 

were the EIA, the Federal Energy Regulatory Commission (FERC) and the Bureau of Labor 

Statistics (BLS).  Each record in the data set contains measurements on firm output and input 

quantities for nuclear power production.  Input variables included fuel, an aggregate of labor 

and maintenance, and capital. The output variable was net nuclear power generation in 

megawatt-hours (mwh).   

An implicit quantity index for fuel was calculated as the ratio of fuel cost to a Tornqvist 

price index for uranium. Uranium prices in dollars per pound U3O8 equivalent were 

downloaded from EIA webpages. 

 An implicit quantity index for labor and maintenance was obtained by dividing the 

aggregate cost of labor and maintenance by a cost-share-weighted Tornqvist price index for 

labor and maintenance.  Data on labor and maintenance costs were obtained by subtracting fuel 

expenses from total nuclear power production expenses.  The price of labor was measured 

using a company-wide average wage rate.  The price of maintenance and other supplies was 

measured using a price index of electrical supplies.   

The capital input was measured using estimates of capital costs as discussed in 

Considine (2000).  The base year value of the capital stock was estimated using the 

replacement cost of base and peak load capacity.  This estimate was then updated in subsequent 

years based upon the value of capital additions and retirements to the nuclear power plant. 

Table 1 presents average annual electricity production over the period 1989-1998 for 

each firm in our sample.  Average production over the period ranges from a low of 1.60 million 

mwh by Delmarva Power and Light to 61.8 million mwh by Commonwealth Edison Co.  

Average production across all firms is 11.2 million mwh with a standard deviation of 12.4 
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million mwh.  There are 14 firms with average output below the sample mean, and one firm 

with output that is nearly five times larger than the average. 

Prior to estimation, all variables were scaled to have unit means.  Thus, the estimated 

first-order coefficients of the distance function can be interpreted as elasticities of distance with 

respect to inputs evaluated at the sample means.  Fuel was used as the normalizing input (see 

equation 13).   

 

8.  Results 

 
For purposes of comparison, we began by estimating the fixed effects and random effects 

models using the method of maximum likelihood (ML).  The two sets of ML estimates were 

obtained using LIMDEP (Greene, 2002) and are presented in the left-hand-columns of Table 2.  

The fixed and random effects models yielded similar estimates of elasticities evaluated at the 

variable means – the estimates from the fixed effects model were 0.67, 0.45 and -0.12 for labor 

and maintenance, capital and fuel respectively; the random effects estimates were 0.64, 0.45 

and -0.1.  The negative estimates of the fuel elasticity are theoretically implausible and this 

caused us to immediately focus our attention on the regularity constraints (ie. monotonicity and 

curvature).   

The (observation-varying) monotonicity and curvature constraints discussed in Section 4 

were examined at each data point in the sample of 260 observations.  The results are 

summarized in Table 3.  Point estimates of elasticities were found to be inconsistent with the 

monotonicity property at more than 190 data points, with most of these violations being 

associated with the fuel input.   Point estimates of the relevant Hessian and bordered Hessian 

matrices were found to be inconsistent with curvature at more than 230 data points.  Thus, we 

conclude that unconstrained maximum likelihood estimates of the parameters are inconsistent 

with economic theory, and any measures of returns to scale or technical efficiency derived 



 

 

17

from them will be unreliable.  Consequently, in the remainder of this paper we restrict our 

attention to the Bayesian results.            

The Bayesian estimation approach allows us to incorporate pre-sample information into 

the estimation process and thereby guarantee that estimated posterior pdfs for all economic 

quantities of interest (ie. elasticities, measures of returns to scale, and technical efficiency 

scores) are consistent with the regularity properties implied by economic theory.  

Monotonicity- and curvature-constrained Bayesian point estimates of the parameters are 

reported in the right-hand columns of Table 2.  The estimated posterior moments reported in 

Table 2 are the means and standard deviations of samples of size 10,000 generated using the 

MCMC techniques described in Section 6.  To estimate the random effects model we followed 

van den Broeck et al. (1994) and Koop et al. (1995) by setting the prior median of the 

efficiency distribution, *τ , to 0.875.  An M-H algorithm with 4 sub-iterations was used to draw 

from the conditional pdf (34). 

Bayesian point estimates of the parameters of the fixed and random effects models are 

very similar (the fixed and random effects estimates of β12 might be opposite in sign, but both 

estimates are very close to zero with relatively large estimated standard errors).  By 

construction, the input elasticites evaluated at the variable means (and, for that matter, every 

point in the sample) are correctly-signed – elasticity estimates from the fixed effects model are 

0.69, 0.27 and 0.04 for labor and maintenance, capital and fuel respectively; the random effects 

estimates are 0.62, 0.33 and 0.04.  These estimated input elasticities are quite different from 

estimates reported in the literature for alternative electricity generation technologies.  For 

example, Atkinson and Primont (2002) report estimates of 0.15, 0.17 and 0.68 for steam 

electric power generators.  

 Table 4 presents estimated posterior means, standard errors and 90% coverage regions 

for the technical efficiency scores of each firm in the sample.  The technical efficiency scores 
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were obtained using equations (24) and (36).  A 90% coverage region is the shortest interval 

containing 90% of the area under a pdf, and is analogous to a 90% confidence interval.  The 

technical efficiency scores obtained from the fixed effects model are generally lower than those 

from the random effects model – the scores from the fixed effects model range from 0.615 to 

0.935 with an average of 0.776, while those from the random effects model range from a low 

of 0.903 to 0.977 with an average of 0.953.  There are approximately 10 firms with estimated 

technical efficiency scores below the average.  Estimates obtained from the random effects 

model exhibit less variation across firms than those from the fixed effects model.   Estimates 

obtained from the fixed effects model are consistent with efficiency scores reported by 

Atkinson and Primont (2002) and Rungsuriyawiboon and Stephanou (2003). 

Table 5 presents estimated posterior means, standard errors and 90% coverage regions 

for the labor and maintenance input elasticity evaluated at the average input level of each firm.  

The fixed effects model yields elasticity estimates that range from a low of 0.685 to a high of 

0.718 with an average of 0.698; the random effects model yields estimates that range from 

0.587 to 0.678 with an average of 0.633.  Table 6 presents a similar set of results for the capital 

input.  The fixed effects model yields capital input elasticities that range from 0.217 to 0.284 

with an average of 0.256; the random effects model yields estimates that range from 0.253 to 

0.382 with an average of 0.318. The estimated posterior standard errors from the random 

effects model are generally lower than those of the fixed effects model.   

 Our MCMC samples were also used to estimate a measure of returns to scale for each 

firm.  Posterior means, standard errors and 90% coverage regions for the returns to scale 

measure given by equation (11) (evaluated at average input and output levels for each firm) are 

presented in Table 7.  The fixed effects model yielded RTS estimates ranging from 1.045 to 

1.171 with an average of 1.100; the random effects model yielded estimates ranging from 

1.085 to 1.169 with an average of 1.111.  These point estimates suggest that all nuclear-power 
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generators operate in the region of increasing RTS.  This result is consistent with the findings 

of Rungsuriyawiboon and Stephanou (2003).  However, a few of the coverage regions span 

one, suggesting there is positive probability that some utilities operate in regions of constant or 

decreasing RTS. 

 Further insights into likely and unlikely values of parameters, elasticities, technical 

efficiency scores and RTS measures can be obtained by examining estimated marginal 

posterior pdfs.  For illustrative purposes, several estimated pdfs are presented in Figures 1 and 

2.  In Figure 1 we present the posterior pdfs for the three input elasticities and the measure of 

returns to scale for Ohio Edison (Firm 16) in 1998.  In Figure 2 we present estimated pdfs for 

Commonwealth Edison (Firm 7) in the same year.   Panels (a) to (c) in both figures show that 

for these firms (and year) there is zero probability that input shares lie outside the unit interval 

(by construction).  Panel (d) in Figure 1 shows that there is zero probability that Ohio Edison is 

operating in the region of constant or decreasing returns to scale, while panel (d) in Figure 2 

shows that Commonwealth Edison is operating in this region with probability 0.15 (using the 

fixed effects model) or 0.27 (random effects).  The asymmetry evident in the pdfs suggests that 

frequentist interval estimation and hypothesis testing procedures predicated on the assumption 

of asymptotic normality are inappropriate in this case. 

 

9.  Conclusions 

 
Distance functions are appropriate representations of multi-input multi-output technologies in 

network industries where behavioral assumptions such as profit maximization are often 

untenable.  The input distance function is particularly appropriate in the electric utility industry 

where firms adjust inputs to produce exogenously-determined levels of electricity output.  

Unfortunately, empirical estimates of the parameters of input distance functions are often 

inconsistent with regularity constraints (eg. monotonicity and curvature) implied by economic 
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theory.  As a consequence, interesting functions of the estimated parameters (eg. technical 

efficiency scores, elasticities, measures of returns to scale) are unreliable and may lead to 

perverse conclusions regarding economic behavior.  For example, monotonicity violations 

imply that increasing the inputs used to produce a given level of output will increase measured 

efficiency. 

One solution to this problem is to use Bayesian methodology to impose monotonicity 

and curvature restrictions on the parameters of the model.  In this paper we estimated input 

distance functions for U.S. nuclear power generators under the assumptions that inefficiency 

effects were either fixed or random.  Results from the two models were economically plausible 

(by construction) and, in this respect, much preferred to estimates obtained using the method of 

maximum likelihood. 

Our results were summarized in terms of estimated characteristics of marginal posterior 

pdfs for parameters, elasticities, technical efficiency scores and measures of returns to scale.  

The fixed effects and random effects models yielded similar estimates of elasticities and 

measures of returns to scale.  However, the fixed effects model yielded estimates of technical 

efficiency that were generally lower than estimates obtained using the random effects model – 

similar findings in other empirical contexts have been reported and explained by several 

authors, including Kim and Schmidt (2000) and O’Donnell and Coelli (2004).   

One of the advantages of the Bayesian approach is that it is possible to obtain exact 

finite sample results concerning any (linear or nonlinear) functions of the parameters.  Thus, 

for example, we were able to estimate finite sample pdfs for measures of returns to scale and 

use these pdfs to determine that, for most firms, there is zero probability they are operating in 

regions of constant or decreasing returns to scale.  Our estimated pdfs were often asymmetric, 

suggesting that sampling theory procedures for testing hypotheses and constructing confidence 

intervals are inappropriate in this case. 
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Table 1: Average Outputs (1989-1998) 

No Utility Name State Average Output 
(106 mwh) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

Southern Company 
Arizona Public Service 
Entergy Corporation 
Baltimore Gas & Electric 
Carolina Power & Light 
Centerior Energy Corp 
Commonwealth Edison 
Consolidated Edison-NY 
Consumers Energy 
Delmarva Power & Light 
Duke Power 
Florida Power and Light 
General Public utilities 
Kansas City Power and Light 
Kansas Gas and Electric 
Ohio Edison 
Pacific Gas and Electric 
Pennsylvania Power and Light 
Public Service Co of NM 
Public Service Electric & Gas 
San Diego Gas and Electric 
Southern California Edison 
Union Electric 
United Illuminating 
Virginia Electric and Power 
Wisconsin Electric Power 

AL 
AZ 
AR 
MD 
NC 
OH 
IL 

NY 
MI 
DE 
NC 
FL 
NJ 
KS 
KS  
OH 
CA 
PA 
NW 
NJ 
CA 
CA 
MO 
CT 
VA 
WI 

24.4 
6.70 
19.0 
10.0 
16.9 
11.6 
61.8 
5.40 
4.60 
1.60 
34.9 
19.3 
10.2 
3.90 
4.20 
7.00 
15.7 
13.6 
2.10 
16.2 
3.30 
15.9 
7.30 
2.40 
21.7 
6.70 

 Mean 
Standard deviation 

 11.2 
12.4 
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Table 2: Estimated Parametersa 

Maximum Likelihood Bayes 

Fixed Effects Random Effects Fixed Effects Random Effects Parameter 

Estimate Est. Asy. 
St.  Error Estimate Est. Asy. 

St.  Error Estimate Est. St.  
Error Estimate Est. St.  

Error 
ψ1 
ψ2 
ψ3 
ψ4 
ψ5 
ψ6 
ψ7 
ψ8 
ψ9 
ψ10 
ψ11 
ψ12 
ψ13 
ψ14 
ψ15 
ψ16 
ψ17 
ψ18 
ψ19 
ψ20 
ψ21 
ψ22 
ψ23 
ψ24 
ψ25 
ψ26 
β0 
β1 
β2 
β11 
β12 
β22 
α1 
α11 
γ11 
γ21 

0.155 
0.226 
0.123 
0.067 
-0.051 
0.020 
-0.020 
-0.113 
-0.025 
0.014 
-0.034 
0.021 
0.027 
0.008 
-0.091 
0.049 
-0.192 
-0.165 
-0.022 
-0.112 
0.067 
0.075 
0.058 
0.166 
-0.076 
0.092 

- 
0.669 
0.447 
0.191 
-0.051 
-0.146 
-0.933 
0.004 
-0.094 
0.137 

(0.110) 
(0.098) 
(0.100) 
(0.099) 
(0.094) 
(0.096) 
(0.096) 
(0.095) 
(0.097) 
(0.093) 
(0.096) 
(0.095) 
(0.097) 
(0.095) 
(0.093) 
(0.097) 
(0.098) 
(0.096) 
(0.099) 
(0.096) 
(0.097) 
(0.096) 
(0.093) 
(0.097) 
(0.095) 
(0.099) 

- 
(0.070) 
(0.082) 
(0.107) 
(0.079) 
(0.119) 
(0.031) 
(0.037) 
(0.052) 
(0.053) 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

0.247 
0.636 
0.451 
0.347 
-0.217 
-0.157 
-0.885 
0.076 
-0.295 
0.350 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

(0.041) 
(0.065) 
(0.061) 
(0.134) 
(0.114) 
(0.186) 
(0.039) 
(0.068) 
(0.073) 
(0.095) 

0.194 
0.243 
0.153 
0.094 
-0.013 
0.098 
0.054 
-0.039 
0.055 
0.051 
0.026 
0.059 
0.044 
0.059 
-0.009 
0.077 
-0.179 
-0.146 
-0.026 
-0.069 
0.107 
0.098 
0.069 
0.130 
-0.011 
0.182 

- 
0.694 
0.265 
0.008 
0.005 
-0.023 
-0.924 
-0.024 
-0.005 
0.011 

(0.109) 
(0.099) 
(0.104) 
(0.122) 
(0.126) 
(0.092) 
(0.134) 
(0.128) 
(0.128) 
(0.105) 
(0.095) 
(0.109) 
(0.100) 
(0.117) 
(0.122) 
(0.110) 
(0.129) 
(0.131) 
(0.114) 
(0.133) 
(0.110) 
(0.133) 
(0.121) 
(0.097) 
(0.120) 
(0.120) 

- 
(0.077) 
(0.070) 
(0.053) 
(0.051) 
(0.052) 
(0.028) 
(0.027) 
(0.036) 
(0.037) 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

-0.021 
0.623 
0.334 
0.017 
-0.005 
-0.012 
-0.910 
-0.008 
-0.022 
0.029 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

(0.039) 
(0.044) 
(0.045) 
(0.055) 
(0.053) 
(0.055) 
(0.027) 
(0.030) 
(0.028) 
(0.028) 

a Subscripts on β coefficients refer to inputs: 1 = labor and maintenance; 2 = capital; q = output. 
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Table 3:  ML Regularity Violations a 

Number of Monotonicity Volations 
Model 

Number of 
Concavity 

Violoations Fuel Labor and 
Maintenance Capital Total 

Fixed Effects 
Random Effects 

239 
252 

178 
199 

0 
1 

16 
4 

194 
201 

a Total number of observations =  260 
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Table 4: Estimated Technical Efficiency Scores 

Fixed Effects Random Effects 
Firm Estimate Est. St.  

Error 
90% Coverage 

Region Estimate Est. St.  
Error 

90% Coverage 
Region 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

0.892 
0.935 
0.856 
0.808 
0.725 
0.810 
0.776 
0.708 
0.779 
0.773 
0.754 
0.780 
0.767 
0.779 
0.728 
0.793 
0.615 
0.636 
0.716 
0.685 
0.817 
0.810 
0.789 
0.836 
0.727 
0.881 

0.087 
0.072 
0.089 
0.089 
0.078 
0.081 
0.087 
0.087 
0.103 
0.080 
0.083 
0.092 
0.077 
0.079 
0.085 
0.085 
0.072 
0.077 
0.077 
0.074 
0.076 
0.088 
0.101 
0.085 
0.079 
0.091 

[0.742, 1.000] 
[0.785, 1.000] 
[0.709, 1.000] 
[0.660, 0.969] 
[0.599, 0.866] 
[0.674, 0.948] 
[0.637, 0.925] 
[0.588, 0.858] 
[0.611, 0.959] 
[0.642, 0.897] 
[0.611, 0.890] 
[0.632, 0.939] 
[0.642, 0.897] 
[0.659, 0.921] 
[0.610, 0.884] 
[0.658, 0.937] 
[0.515, 0.740] 
[0.509, 0.756] 
[0.595, 0.836] 
[0.579, 0.815] 
[0.700, 0.945] 
[0.684, 0.991] 
[0.634, 1.000] 
[0.692, 0.983] 
[0.610, 0.865] 
[0.722, 1.000] 

0.931 
0.903 
0.940 
0.947 
0.960 
0.959 
0.960 
0.967 
0.960 
0.959 
0.961 
0.956 
0.952 
0.961 
0.964 
0.941 
0.977 
0.977 
0.961 
0.967 
0.944 
0.938 
0.955 
0.942 
0.965 
0.927 

0.103 
0.105 
0.102 
0.107 
0.116 
0.110 
0.109 
0.120 
0.109 
0.110 
0.114 
0.108 
0.108 
0.112 
0.116 
0.109 
0.131 
0.125 
0.117 
0.119 
0.111 
0.110 
0.108 
0.106 
0.115 
0.107 

[0.823, 0.994] 
[0.763, 0.988] 
[0.841, 0.996] 
[0.857, 0.997] 
[0.894, 0.998] 
[0.887, 0.997] 
[0.883, 0.998] 
[0.906, 0.998] 
[0.886, 0.997] 
[0.879, 0.998] 
[0.888, 0.998] 
[0.875, 0.997] 
[0.868, 0.996] 
[0.886, 0.998] 
[0.893, 0.998] 
[0.839, 0.995] 
[0.931, 0.999] 
[0.926, 0.999] 
[0.882, 0.998] 
[0.895, 0.998] 
[0.838, 0.995] 
[0.835, 0.997] 
[0.867, 0.996] 
[0.851, 0.997] 
[0.904, 0.997] 
[0.794, 0.991] 

Mean 0.776 0.084 [0.642, 0.916] 0.953 0.112 [0.869, 0.997] 
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Table 5: Estimated Labor/Maintenance Elasticity 

Fixed Effects Random Effects 
Firm Estimate Est. St.  

Error 
90% Coverage 

Region Estimate Est. St.  
Error 

90% Coverage 
Region 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

0.688 
0.686 
0.703 
0.703 
0.686 
0.689 
0.685 
0.703 
0.708 
0.718 
0.699 
0.703 
0.694 
0.693 
0.704 
0.692 
0.689 
0.705 
0.701 
0.693 
0.712 
0.694 
0.711 
0.691 
0.697 
0.707 

0.092 
0.071 
0.083 
0.078 
0.089 
0.077 
0.122 
0.074 
0.060 
0.059 
0.099 
0.086 
0.074 
0.063 
0.063 
0.067 
0.085 
0.076 
0.073 
0.083 
0.056 
0.080 
0.070 
0.088 
0.089 
0.065 

[0.532, 0.822] 
[0.555, 0.788] 
[0.557, 0.829] 
[0.563, 0.818] 
[0.536, 0.813] 
[0.547, 0.799] 
[0.502, 0.874] 
[0.568, 0.813] 
[0.595, 0.796] 
[0.620, 0.810] 
[0.537, 0.851] 
[0.557, 0.830] 
[0.565, 0.796] 
[0.573, 0.789] 
[0.586, 0.798] 
[0.568, 0.784] 
[0.548, 0.808] 
[0.561, 0.821] 
[0.574, 0.815] 
[0.552, 0.811] 
[0.609, 0.798] 
[0.554, 0.809] 
[0.580, 0.818] 
[0.536, 0.821] 
[0.540, 0.833] 
[0.581, 0.803] 

0.609 
0.625 
0.627 
0.637 
0.610 
0.621 
0.587 
0.641 
0.650 
0.678 
0.613 
0.624 
0.625 
0.642 
0.651 
0.629 
0.613 
0.636 
0.654 
0.617 
0.662 
0.621 
0.655 
0.659 
0.620 
0.648 

0.056 
0.048 
0.051 
0.052 
0.053 
0.052 
0.071 
0.053 
0.040 
0.056 
0.059 
0.050 
0.042 
0.051 
0.050 
0.041 
0.046 
0.054 
0.056 
0.046 
0.044 
0.047 
0.059 
0.089 
0.058 
0.046 

[0.512, 0.696] 
[0.543, 0.699] 
[0.539, 0.707] 
[0.549, 0.719] 
[0.522, 0.696] 
[0.530, 0.698] 
[0.474, 0.704] 
[0.555, 0.728] 
[0.583, 0.712] 
[0.576, 0.763] 
[0.513, 0.708] 
[0.540, 0.705] 
[0.555, 0.694] 
[0.551, 0.717] 
[0.564, 0.724] 
[0.560, 0.691] 
[0.536, 0.691] 
[0.543, 0.713] 
[0.563, 0.748] 
[0.538, 0.693] 
[0.582, 0.729] 
[0.540, 0.695] 
[0.549, 0.739] 
[0.489, 0.783] 
[0.521, 0.709] 
[0.567, 0.715] 

Mean 0.698 0.078 [0.561, 0.813] 0.633 0.053 [0.542, 0.714] 
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Table 6: Estimated Capital Elasticity 

Fixed Effects Random Effects 
Firm Estimate Est. St.  

Error 
90% Coverage 

Region Estimate Est. St.  
Error 

90% Coverage 
Region 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

0.281 
0.268 
0.257 
0.244 
0.275 
0.275 
0.284 
0.236 
0.235 
0.217 
0.267 
0.255 
0.261 
0.258 
0.244 
0.262 
0.270 
0.255 
0.224 
0.267 
0.229 
0.267 
0.242 
0.268 
0.268 
0.241 

0.087 
0.063 
0.078 
0.071 
0.082 
0.072 
0.117 
0.067 
0.055 
0.061 
0.094 
0.080 
0.066 
0.055 
0.057 
0.058 
0.078 
0.071 
0.065 
0.077 
0.052 
0.074 
0.066 
0.085 
0.084 
0.060 

[0.142, 0.431] 
[0.173, 0.382] 
[0.128, 0.393] 
[0.131, 0.365] 
[0.150, 0.417] 
[0.165, 0.407] 
[0.096, 0.467] 
[0.131, 0.349] 
[0.148, 0.328] 
[0.121, 0.318] 
[0.111, 0.425] 
[0.124, 0.393] 
[0.159, 0.380] 
[0.172, 0.357] 
[0.155, 0.342] 
[0.173, 0.368] 
[0.152, 0.403] 
[0.138, 0.381] 
[0.121, 0.330] 
[0.147, 0.400] 
[0.146, 0.319] 
[0.149, 0.398] 
[0.135, 0.359] 
[0.140, 0.423] 
[0.131, 0.416] 
[0.145, 0.345] 

0.358 
0.326 
0.331 
0.308 
0.349 
0.340 
0.382 
0.295 
0.290 
0.253 
0.351 
0.331 
0.327 
0.306 
0.293 
0.321 
0.344 
0.321 
0.268 
0.340 
0.276 
0.338 
0.295 
0.294 
0.343 
0.297 

0.058 
0.046 
0.053 
0.053 
0.053 
0.053 
0.072 
0.053 
0.043 
0.059 
0.062 
0.052 
0.041 
0.049 
0.050 
0.039 
0.046 
0.056 
0.054 
0.047 
0.047 
0.048 
0.061 
0.089 
0.060 
0.048 

[0.266, 0.456] 
[0.255, 0.404] 
[0.248, 0.417] 
[0.224, 0.393] 
[0.263, 0.436] 
[0.259, 0.432] 
[0.258, 0.492] 
[0.208, 0.381] 
[0.220, 0.359] 
[0.159, 0.353] 
[0.252, 0.452] 
[0.249, 0.416] 
[0.260, 0.395] 
[0.233, 0.393] 
[0.217, 0.381] 
[0.259, 0.385] 
[0.265, 0.420] 
[0.238, 0.412] 
[0.178, 0.358] 
[0.263, 0.417] 
[0.200, 0.354] 
[0.262, 0.417] 
[0.203, 0.398] 
[0.171, 0.469] 
[0.251, 0.442] 
[0.221, 0.376] 

Mean 0.256 0.072 [0.142, 0.381] 0.318 0.054 [0.234, 0.408] 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

31

Table 7: Estimated Measures of Returns to Scale 

Fixed Effects Random Effects 
Firm Estimate Est. St.  

Error 
90% Coverage 

Region Estimate Est. St.  
Error 

90% Coverage 
Region 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

1.062 
1.101 
1.079 
1.110 
1.075 
1.080 
1.045 
1.127 
1.124 
1.163 
1.062 
1.080 
1.092 
1.117 
1.122 
1.101 
1.078 
1.087 
1.171 
1.079 
1.137 
1.079 
1.113 
1.134 
1.071 
1.115 

0.043 
0.045 
0.038 
0.061 
0.045 
0.035 
0.066 
0.072 
0.054 
0.087 
0.050 
0.042 
0.038 
0.050 
0.051 
0.039 
0.040 
0.034 
0.128 
0.039 
0.061 
0.036 
0.045 
0.075 
0.044 
0.046 

[0.992, 1.134] 
[1.043, 1.173] 
[1.018, 1.142] 
[1.035, 1.202] 
[1.005, 1.154] 
[1.025, 1.139] 
[0.943, 1.161] 
[1.042, 1.239] 
[1.062, 1.206] 
[1.060, 1.282] 
[0.984, 1.145] 
[1.015, 1.152] 
[1.038, 1.159] 
[1.056, 1.200] 
[1.059, 1.206] 
[1.051, 1.164] 
[1.014, 1.150] 
[1.033, 1.143] 
[1.042, 1.348] 
[1.017, 1.148] 
[1.066, 1.224] 
[1.022, 1.139] 
[1.050, 1.186] 
[1.028, 1.269] 
[1.001, 1.146] 
[1.058, 1.185] 

1.085 
1.109 
1.099 
1.125 
1.099 
1.090 
1.091 
1.140 
1.130 
1.145 
1.092 
1.105 
1.109 
1.111 
1.119 
1.110 
1.102 
1.097 
1.169 
1.102 
1.132 
1.097 
1.109 
1.098 
1.092 
1.120 

0.046 
0.034 
0.040 
0.047 
0.044 
0.032 
0.077 
0.053 
0.041 
0.073 
0.055 
0.043 
0.034 
0.039 
0.042 
0.031 
0.041 
0.033 
0.087 
0.040 
0.049 
0.036 
0.040 
0.070 
0.045 
0.037 

[1.001, 1.159] 
[1.060, 1.171] 
[1.029, 1.165] 
[1.054, 1.207] 
[1.024, 1.170] 
[1.040, 1.146] 
[0.951, 1.209] 
[1.061, 1.232] 
[1.066, 1.203] 
[1.039, 1.270] 
[0.993, 1.179] 
[1.031, 1.178] 
[1.058, 1.168] 
[1.051, 1.180] 
[1.054, 1.191] 
[1.067, 1.164] 
[1.033, 1.169] 
[1.044, 1.152] 
[1.048, 1.323] 
[1.034, 1.168] 
[1.057, 1.217] 
[1.035, 1.159] 
[1.049, 1.180] 
[1.002, 1.231] 
[1.014, 1.164] 
[1.064, 1.185] 

Mean 1.100 0.052 [1.029, 1.184] 1.111 0.046 [1.037, 1.190] 
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(a) Labor Elasticity 

 
(b) Capital Elasticity 

 
(c) Fuel Elasticity 

 
(d) Returns to Scale 

 
Figure 1: Estimated Marginal Posterior PDFs for Ohio Electric in 1998 
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(a) Labor Elasticity 

 
(b) Capital Elasticity 

(c) Fuel Elasticity 

 
(d) Returns to Scale 

 
Figure 2: Estimated Marginal Posterior PDFs for Commonwealth Edison in 1998 

 
 

 


