1,208 research outputs found

    On the zone of the boundary of a convex body

    Full text link
    We consider an arrangement \A of nn hyperplanes in Rd\R^d and the zone Z\Z in \A of the boundary of an arbitrary convex set in Rd\R^d in such an arrangement. We show that, whereas the combinatorial complexity of Z\Z is known only to be OO \cite{APS}, the outer part of the zone has complexity OO (without the logarithmic factor). Whether this bound also holds for the complexity of the inner part of the zone is still an open question (even for d=2d=2)

    Output-Sensitive Tools for Range Searching in Higher Dimensions

    Full text link
    Let PP be a set of nn points in Rd{\mathbb R}^{d}. A point pPp \in P is kk\emph{-shallow} if it lies in a halfspace which contains at most kk points of PP (including pp). We show that if all points of PP are kk-shallow, then PP can be partitioned into Θ(n/k)\Theta(n/k) subsets, so that any hyperplane crosses at most O((n/k)11/(d1)log2/(d1)(n/k))O((n/k)^{1-1/(d-1)} \log^{2/(d-1)}(n/k)) subsets. Given such a partition, we can apply the standard construction of a spanning tree with small crossing number within each subset, to obtain a spanning tree for the point set PP, with crossing number O(n11/(d1)k1/d(d1)log2/(d1)(n/k))O(n^{1-1/(d-1)}k^{1/d(d-1)} \log^{2/(d-1)}(n/k)). This allows us to extend the construction of Har-Peled and Sharir \cite{hs11} to three and higher dimensions, to obtain, for any set of nn points in Rd{\mathbb R}^{d} (without the shallowness assumption), a spanning tree TT with {\em small relative crossing number}. That is, any hyperplane which contains wn/2w \leq n/2 points of PP on one side, crosses O(n11/(d1)w1/d(d1)log2/(d1)(n/w))O(n^{1-1/(d-1)}w^{1/d(d-1)} \log^{2/(d-1)}(n/w)) edges of TT. Using a similar mechanism, we also obtain a data structure for halfspace range counting, which uses O(nloglogn)O(n \log \log n) space (and somewhat higher preprocessing cost), and answers a query in time O(n11/(d1)k1/d(d1)(log(n/k))O(1))O(n^{1-1/(d-1)}k^{1/d(d-1)} (\log (n/k))^{O(1)}), where kk is the output size

    The Complexity of Order Type Isomorphism

    Full text link
    The order type of a point set in RdR^d maps each (d+1)(d{+}1)-tuple of points to its orientation (e.g., clockwise or counterclockwise in R2R^2). Two point sets XX and YY have the same order type if there exists a mapping ff from XX to YY for which every (d+1)(d{+}1)-tuple (a1,a2,,ad+1)(a_1,a_2,\ldots,a_{d+1}) of XX and the corresponding tuple (f(a1),f(a2),,f(ad+1))(f(a_1),f(a_2),\ldots,f(a_{d+1})) in YY have the same orientation. In this paper we investigate the complexity of determining whether two point sets have the same order type. We provide an O(nd)O(n^d) algorithm for this task, thereby improving upon the O(n3d/2)O(n^{\lfloor{3d/2}\rfloor}) algorithm of Goodman and Pollack (1983). The algorithm uses only order type queries and also works for abstract order types (or acyclic oriented matroids). Our algorithm is optimal, both in the abstract setting and for realizable points sets if the algorithm only uses order type queries.Comment: Preliminary version of paper to appear at ACM-SIAM Symposium on Discrete Algorithms (SODA14

    Zonotopes, Dicings, and Voronoi’s Conjecture on Parallelohedra

    Get PDF
    AbstractIn 1909, Voronoi conjectured that if some selection of translates of a polytope forms a facet-to-facet tiling of euclidean space, then the polytope is affinely equivalent to the Voronoi polytope for a lattice. He referred to polytopes with this tiling property as parallelohedra, but they are now frequently called parallelotopes. I show that Voronoi’s conjecture holds for the special case where the parallelotope is a zonotope. I also show that the Voronoi polytope for a lattice is a zonotope if and only if the Delaunay tiling for the lattice is a dicing (defined at the beginning of Section 3)

    Fast Algorithms for Geometric Consensuses

    Get PDF
    Let P be a set of n points in ?^d in general position. A median hyperplane (roughly) splits the point set P in half. The yolk of P is the ball of smallest radius intersecting all median hyperplanes of P. The egg of P is the ball of smallest radius intersecting all hyperplanes which contain exactly d points of P. We present exact algorithms for computing the yolk and the egg of a point set, both running in expected time O(n^(d-1) log n). The running time of the new algorithm is a polynomial time improvement over existing algorithms. We also present algorithms for several related problems, such as computing the Tukey and center balls of a point set, among others

    Point location in zones of k-flats in arrangements

    Get PDF
    corecore