13,055 research outputs found

    On the X-rays of permutations

    Full text link
    The X-ray of a permutation is defined as the sequence of antidiagonal sums in the associated permutation matrix. X-rays of permutation are interesting in the context of Discrete Tomography since many types of integral matrices can be written as linear combinations of permutation matrices. This paper is an invitation to the study of X-rays of permutations from a combinatorial point of view. We present connections between these objects and nondecreasing differences of permutations, zero-sum arrays, decomposable permutations, score sequences of tournaments, queens' problems and rooks' problems.Comment: 7 page

    Continued fractions for permutation statistics

    Full text link
    We explore a bijection between permutations and colored Motzkin paths that has been used in different forms by Foata and Zeilberger, Biane, and Corteel. By giving a visual representation of this bijection in terms of so-called cycle diagrams, we find simple translations of some statistics on permutations (and subsets of permutations) into statistics on colored Motzkin paths, which are amenable to the use of continued fractions. We obtain new enumeration formulas for subsets of permutations with respect to fixed points, excedances, double excedances, cycles, and inversions. In particular, we prove that cyclic permutations whose excedances are increasing are counted by the Bell numbers.Comment: final version formatted for DMTC

    Cambrian Lattices

    Get PDF
    For an arbitrary finite Coxeter group W we define the family of Cambrian lattices for W as quotients of the weak order on W with respect to certain lattice congruences. We associate to each Cambrian lattice a complete fan, which we conjecture is the normal fan of a polytope combinatorially isomorphic to the generalized associahedron for W. In types A and B we obtain, by means of a fiber-polytope construction, combinatorial realizations of the Cambrian lattices in terms of triangulations and in terms of permutations. Using this combinatorial information, we prove in types A and B that the Cambrian fans are combinatorially isomorphic to the normal fans of the generalized associahedra and that one of the Cambrian fans is linearly isomorphic to Fomin and Zelevinsky's construction of the normal fan as a "cluster fan." Our construction does not require a crystallographic Coxeter group and therefore suggests a definition, at least on the level of cellular spheres, of a generalized associahedron for any finite Coxeter group. The Tamari lattice is one of the Cambrian lattices of type A, and two "Tamari" lattices in type B are identified and characterized in terms of signed pattern avoidance. We also show that open intervals in Cambrian lattices are either contractible or homotopy equivalent to spheres.Comment: Revisions in exposition (partly in response to the suggestions of an anonymous referee) including many new figures. Also, Conjecture 1.4 and Theorem 1.5 are replaced by slightly more detailed statements. To appear in Adv. Math. 37 pages, 8 figure

    Symmetries and Paraparticles as a Motivation for Structuralism

    Get PDF
    This paper develops an analogy proposed by Stachel between general relativity (GR) and quantum mechanics (QM) as regards permutation invariance. Our main idea is to overcome Pooley's criticism of the analogy by appeal to paraparticles. In GR the equations are (the solution space is) invariant under diffeomorphisms permuting spacetime points. Similarly, in QM the equations are invariant under particle permutations. Stachel argued that this feature--a theory's `not caring which point, or particle, is which'--supported a structuralist ontology. Pooley criticizes this analogy: in QM the (anti-)symmetrization of fermions and bosons implies that each individual state (solution) is fixed by each permutation, while in GR a diffeomorphism yields in general a distinct, albeit isomorphic, solution. We define various versions of structuralism, and go on to formulate Stachel's and Pooley's positions, admittedly in our own terms. We then reply to Pooley. Though he is right about fermions and bosons, QM equally allows more general types of symmetry, in which states (vectors, rays or density operators) are not fixed by all permutations (called `paraparticle states'). Thus Stachel's analogy is revived.Comment: 45 pages, Latex, 3 Figures; forthcoming in British Journal for the Philosophy of Scienc
    • …
    corecore