1,310 research outputs found

    The complexity and geometry of numerically solving polynomial systems

    Full text link
    These pages contain a short overview on the state of the art of efficient numerical analysis methods that solve systems of multivariate polynomial equations. We focus on the work of Steve Smale who initiated this research framework, and on the collaboration between Stephen Smale and Michael Shub, which set the foundations of this approach to polynomial system--solving, culminating in the more recent advances of Carlos Beltran, Luis Miguel Pardo, Peter Buergisser and Felipe Cucker

    On the Complexity of Solving Zero-Dimensional Polynomial Systems via Projection

    Full text link
    Given a zero-dimensional polynomial system consisting of n integer polynomials in n variables, we propose a certified and complete method to compute all complex solutions of the system as well as a corresponding separating linear form l with coefficients of small bit size. For computing l, we need to project the solutions into one dimension along O(n) distinct directions but no further algebraic manipulations. The solutions are then directly reconstructed from the considered projections. The first step is deterministic, whereas the second step uses randomization, thus being Las-Vegas. The theoretical analysis of our approach shows that the overall cost for the two problems considered above is dominated by the cost of carrying out the projections. We also give bounds on the bit complexity of our algorithms that are exclusively stated in terms of the number of variables, the total degree and the bitsize of the input polynomials

    Novel Approach to Real Polynomial Root-finding and Matrix Eigen-solving

    Full text link
    Univariate polynomial root-finding is both classical and important for modern computing. Frequently one seeks just the real roots of a polynomial with real coefficients. They can be approximated at a low computational cost if the polynomial has no nonreal roots, but typically nonreal roots are much more numerous than the real ones. We dramatically accelerate the known algorithms in this case by exploiting the correlation between the computations with matrices and polynomials, extending the techniques of the matrix sign iteration, and exploiting the structure of the companion matrix of the input polynomial. We extend some of the proposed techniques to the approximation of the real eigenvalues of a real nonsymmetric matrix.Comment: 17 pages, added algorithm
    • …
    corecore