4 research outputs found

    Fast Heuristic and Exact Algorithms for Two-Level Hazard-Free Logic Minimization

    Get PDF
    None of the available minimizers for 2-level hazard-free logic minimization can synthesize very large circuits. This limitation has forced researchers to resort to manual and automated circuit partitioning techniques. This paper introduces two new 2-level logic minimizers:ESPRESSO-HF, a heuristic method which is loosely based on ESPRESSO-II, and IMPYMIN, an exact method based on implicit data structures. Both minimizers can solve all currently available examples, which range up to 32 inputs and 33 outputs.These include examples that have never been solved before.For examples that can be solved by other minimizers our methods are several orders of magnitude faster. As by-products of these algorithms, we also present two additional results. First, we introduce a fast new algorithm to check if a hazard-free covering problem can feasibly be solved. Second, we introduce a novel formulation of the 2-level hazard-free logic minimization problem by capturing hazard-freedom constraints within a synchronous function by adding new variables

    Universal Smart Grid Agent for Distributed Power Generation Management

    Get PDF
    "Somewhere, there is always wind blowing or the sun shining." This maxim could lead the global shift from fossil to renewable energy sources, suggesting that there is enough energy available to be turned into electricity. But the already impressive numbers that are available today, along with the European Union's 20-20-20 goal – to power 20% of the EU energy consumption from renewables until 2020 –, might mislead us over the problem that the go-to renewables readily available rely on a primary energy source mankind cannot control: the weather. At the same time, the notion of the smart grid introduces a vast array of new data coming from sensors in the power grid, at wind farms, power plants, transformers, and consumers. The new wealth of information might seem overwhelming, but can help to manage the different actors in the power grid. This book proposes to view the problem of power generation and distribution in the face of increased volatility as a problem of information distribution and processing. It enhances the power grid by turning its nodes into agents that forecast their local power balance from historical data, using artificial neural networks and the multi-part evolutionary training algorithm described in this book. They pro-actively communicate power demand and supply, adhering to a set of behavioral rules this book defines, and finally solve the 0-1 knapsack problem of choosing offers in such a way that not only solves the disequilibrium, but also minimizes line loss, by elegant modeling in the Boolean domain. The book shows that the Divide-et-Impera approach of a distributed grid control can lead to an efficient, reliable integration of volatile renewable energy sources into the power grid

    Preimages for SHA-1

    Get PDF
    This research explores the problem of finding a preimage — an input that, when passed through a particular function, will result in a pre-specified output — for the compression function of the SHA-1 cryptographic hash. This problem is much more difficult than the problem of finding a collision for a hash function, and preimage attacks for very few popular hash functions are known. The research begins by introducing the field and giving an overview of the existing work in the area. A thorough analysis of the compression function is made, resulting in alternative formulations for both parts of the function, and both statistical and theoretical tools to determine the difficulty of the SHA-1 preimage problem. Different representations (And- Inverter Graph, Binary Decision Diagram, Conjunctive Normal Form, Constraint Satisfaction form, and Disjunctive Normal Form) and associated tools to manipulate and/or analyse these representations are then applied and explored, and results are collected and interpreted. In conclusion, the SHA-1 preimage problem remains unsolved and insoluble for the foreseeable future. The primary issue is one of efficient representation; despite a promising theoretical difficulty, both the diffusion characteristics and the depth of the tree stand in the way of efficient search. Despite this, the research served to confirm and quantify the difficulty of the problem both theoretically, using Schaefer's Theorem, and practically, in the context of different representations
    corecore