2,774 research outputs found

    Low Power Processor Architectures and Contemporary Techniques for Power Optimization – A Review

    Get PDF
    The technological evolution has increased the number of transistors for a given die area significantly and increased the switching speed from few MHz to GHz range. Such inversely proportional decline in size and boost in performance consequently demands shrinking of supply voltage and effective power dissipation in chips with millions of transistors. This has triggered substantial amount of research in power reduction techniques into almost every aspect of the chip and particularly the processor cores contained in the chip. This paper presents an overview of techniques for achieving the power efficiency mainly at the processor core level but also visits related domains such as buses and memories. There are various processor parameters and features such as supply voltage, clock frequency, cache and pipelining which can be optimized to reduce the power consumption of the processor. This paper discusses various ways in which these parameters can be optimized. Also, emerging power efficient processor architectures are overviewed and research activities are discussed which should help reader identify how these factors in a processor contribute to power consumption. Some of these concepts have been already established whereas others are still active research areas. © 2009 ACADEMY PUBLISHER

    Learning Intrusion Prevention Policies through Optimal Stopping

    Full text link
    We study automated intrusion prevention using reinforcement learning. In a novel approach, we formulate the problem of intrusion prevention as an optimal stopping problem. This formulation allows us insight into the structure of the optimal policies, which turn out to be threshold based. Since the computation of the optimal defender policy using dynamic programming is not feasible for practical cases, we approximate the optimal policy through reinforcement learning in a simulation environment. To define the dynamics of the simulation, we emulate the target infrastructure and collect measurements. Our evaluations show that the learned policies are close to optimal and that they indeed can be expressed using thresholds.Comment: 10 page

    Measuring and Managing Answer Quality for Online Data-Intensive Services

    Full text link
    Online data-intensive services parallelize query execution across distributed software components. Interactive response time is a priority, so online query executions return answers without waiting for slow running components to finish. However, data from these slow components could lead to better answers. We propose Ubora, an approach to measure the effect of slow running components on the quality of answers. Ubora randomly samples online queries and executes them twice. The first execution elides data from slow components and provides fast online answers; the second execution waits for all components to complete. Ubora uses memoization to speed up mature executions by replaying network messages exchanged between components. Our systems-level implementation works for a wide range of platforms, including Hadoop/Yarn, Apache Lucene, the EasyRec Recommendation Engine, and the OpenEphyra question answering system. Ubora computes answer quality much faster than competing approaches that do not use memoization. With Ubora, we show that answer quality can and should be used to guide online admission control. Our adaptive controller processed 37% more queries than a competing controller guided by the rate of timeouts.Comment: Technical Repor

    RAPID: Enabling Fast Online Policy Learning in Dynamic Public Cloud Environments

    Full text link
    Resource sharing between multiple workloads has become a prominent practice among cloud service providers, motivated by demand for improved resource utilization and reduced cost of ownership. Effective resource sharing, however, remains an open challenge due to the adverse effects that resource contention can have on high-priority, user-facing workloads with strict Quality of Service (QoS) requirements. Although recent approaches have demonstrated promising results, those works remain largely impractical in public cloud environments since workloads are not known in advance and may only run for a brief period, thus prohibiting offline learning and significantly hindering online learning. In this paper, we propose RAPID, a novel framework for fast, fully-online resource allocation policy learning in highly dynamic operating environments. RAPID leverages lightweight QoS predictions, enabled by domain-knowledge-inspired techniques for sample efficiency and bias reduction, to decouple control from conventional feedback sources and guide policy learning at a rate orders of magnitude faster than prior work. Evaluation on a real-world server platform with representative cloud workloads confirms that RAPID can learn stable resource allocation policies in minutes, as compared with hours in prior state-of-the-art, while improving QoS by 9.0x and increasing best-effort workload performance by 19-43%

    Centaur: Host-Side SSD Caching for Storage Performance Control

    Full text link

    Improving Results of Differential Evolution Algorithm

    Get PDF
    Optimisation problems are of prime importance in scientific and engineering communities. Many day-to-day tasks in these fields can be classified as optimisation problems. Due to their enormous solution spaces, optimisation problems frequently lie in class NP. In such cases, engineers and researchers have to rely on algorithms and techniques that can find sub-optimal solutions to these problems. One of the most dependable algorithms for numerical optimisation problems is Differential Evolution (DE). Since its introduction in the mid 1990’s, DE has been on the fore front when it comes to applicability of optimisation algorithms to variety of real-parameter optimisation problems. This popularity of DE has driven intensive research to further improve its capability to find optimal solutions. In this thesis we present a variant of DE to produce improved solutions with greater reliability. In doing so, we introduce a novel strategy to incorporate ancestral vectors into the optimisation process. We show that a controlled introduction of ancestral vectors into the optimisation process has a generally positive influence on convergence rate of the algorithm. Evaluation of the proposed algorithm forms a major part of this work, as an empirical evidence serves to demonstrate the performance of stochastic algorithms. The resulting implementation of the algorithm is made available as an open source software along with its reference manual
    • …
    corecore