262 research outputs found

    Performance analysis of massive multiple input multiple output for high speed railway

    Get PDF
    This paper analytically reviews the performance of massive multiple input multiple output (MIMO) system for communication in highly mobility scenarios like high speed Railways. As popularity of high speed train increasing day by day, high data rate wireless communication system for high speed train is extremely required. 5G wireless communication systems must be designed to meet the requirement of high speed broadband services at speed of around 500 km/h, which is the expected speed achievable by HSR systems, at a data rate of 180 Mbps or higher. Significant challenges of high mobility communications are fast time-varying fading, channel estimation errors, doppler diversity, carrier frequency offset, inter carrier interference, high penetration loss and fast and frequent handovers. Therefore, crucial requirement to design high mobility communication channel models or systems prevails. Recently, massive MIMO techniques have been proposed to significantly improve the performance of wireless networks for upcoming 5G technology. Massive MIMO provide high throughput and high energy efficiency in wireless communication channel. In this paper, key findings, challenges and requirements to provide high speed wireless communication onboard the high speed train is pointed out after thorough literature review. In last, future research scope to bridge the research gap by designing efficient channel model by using massive MIMO and other optimization method is mentioned

    MASSIVE MIMO FOR HIGH-SPEED TRAIN COMMUNICATION SYSTEMS

    Get PDF
    With the current development in wireless communications in high-mobility systems such as high-speed train (HST), the HST scenario is accepted as among the different scenarios for the fifth-generation (5G). Massive Multiple-Input-Multiple-Output (MIMO) systems, which are equipped with tens or hundreds of antennas has become an improved MIMO system which can assist in achieving the ever-growing demand of data for 5G wireless communication systems. In this study, the associated 5G technologies, as well as the equivalent channel modeling in HST settings and the challenges of deploying massive MIMO on HST, was investigated The channel model was modeled using the WINNER II channel model. With regrads, the proposed non-stationary IMT-A massive MIMO channel models, the essential statistical properties such as the spatial cross-correlation function (CCF), local temporal autocorrelation function (ACF) of the massive MIMO channel model using different propagation scenarios such as open space, viaduct and cutting was analyzed and investigated. The results from the simulations were compared with the analytical results in other to show that the statistical properties vary with time as a result of the non-stationarity of the proposed channel model. The agreement between the stationary interval of the non-stationary IMT-A channel model and the HST under different propagation scenarios shows the efficiency of the proposed channel model. Based on findings; the impact of the deployment of a large antenna on the channel capacity should be thoroughly investigated under different HST propagation scenario. Also, more HST train propagation scenarios such as the tunnel, hilly terrain, and the station should be considered in the non-stationary IMT-A massive MIMO channel models
    • …
    corecore