8 research outputs found

    Quantized Deep Transfer Learning - Gearbox Fault Diagnosis on Edge Devices

    Get PDF
    This study has designed and implemented a deep transfer learning (DTL) model-based framework that takes an input time series of gearbox vibration patterns, which are accelerometer readings. It classifies the gear’s damage type from a predefined catalog. Industrial gearboxes are often operated even after damage because damage detection is formidable. It causes a lot of wear and tear, which leads to more repair costs. With this proposed DTL model-based framework, at an early stage, gearbox damage can be detected so that gears can be replaced immediately with less repair cost. The proposed methodology involves training a convolutional neural network (CNN) model using a transfer learning technique on a predefined dataset of eight types of gearbox conditions. Then, using quantization, the size of the CNN model is reduced, leading to easy inference on edge and embedded devices. An accuracy of 99.49 % using transfer learning of the VGG16 model is achieved, pre-trained on the Imagenet dataset. Other models and architectures were also tested, but VGG16 emerged as the winner. The methodology also addresses the problem of deployment on edge/embedded devices, as in most cases, accurate models are too heavy to be used in the industry due to memory and computation power constraints in embedded devices. This is done with the help of quantization, enabling the proposed model to be deployed on devices like the Raspberry Pi, leading to inference on the go without the need for the internet and cloud computing. Consequently, the current methodology achieved a 4x reduction in model size with the help of INT8 Quantization

    PBGen: Partial Binarization of Deconvolution-Based Generators for Edge Intelligence

    Full text link
    This work explores the binarization of the deconvolution-based generator in a GAN for memory saving and speedup of image construction. Our study suggests that different from convolutional neural networks (including the discriminator) where all layers can be binarized, only some of the layers in the generator can be binarized without significant performance loss. Supported by theoretical analysis and verified by experiments, a direct metric based on the dimension of deconvolution operations is established, which can be used to quickly decide which layers in the generator can be binarized. Our results also indicate that both the generator and the discriminator should be binarized simultaneously for balanced competition and better performance. Experimental results based on CelebA suggest that directly applying state-of-the-art binarization techniques to all the layers of the generator will lead to 2.83×\times performance loss measured by sliced Wasserstein distance compared with the original generator, while applying them to selected layers only can yield up to 25.81×\times saving in memory consumption, and 1.96×\times and 1.32×\times speedup in inference and training respectively with little performance loss.Comment: 17 pages, paper re-organized
    corecore