7,819 research outputs found

    Spectrum sharing models in cognitive radio networks

    Get PDF
    Spectrum scarcity demands thinking new ways to manage the distribution of radio frequency bands so that its use is more effective. The emerging technology that can enable this paradigm shift is the cognitive radio. Different models for organizing and managing cognitive radios have emerged, all with specific strategic purposes. In this article we review the allocation spectrum patterns of cognitive radio networks and analyse which are the common basis of each model.We expose the vulnerabilities and open challenges that still threaten the adoption and exploitation of cognitive radios for open civil networks.L'escassetat de demandes d'espectre fan pensar en noves formes de gestionar la distribució de les bandes de freqüència de ràdio perquè el seu ús sigui més efectiu. La tecnologia emergent que pot permetre aquest canvi de paradigma és la ràdio cognitiva. Han sorgit diferents models d'organització i gestió de les ràdios cognitives, tots amb determinats fins estratègics. En aquest article es revisen els patrons d'assignació de l'espectre de les xarxes de ràdio cognitiva i s'analitzen quals són la base comuna de cada model. S'exposen les vulnerabilitats i els desafiaments oberts que segueixen amenaçant l'adopció i l'explotació de les ràdios cognitives per obrir les xarxes civils.La escasez de demandas de espectro hacen pensar en nuevas formas de gestionar la distribución de las bandas de frecuencia de radio para que su uso sea más efectivo. La tecnología emergente que puede permitir este cambio de paradigma es la radio cognitiva. Han surgido diferentes modelos de organización y gestión de las radios cognitivas, todos con determinados fines estratégicos. En este artículo se revisan los patrones de asignación del espectro de las redes de radio cognitiva y se analizan cuales son la base común de cada modelo. Se exponen las vulnerabilidades y los desafíos abiertos que siguen amenazando la adopción y la explotación de las radios cognitivas para abrir las redes civiles

    Security in Cognitive Radio Networks

    Full text link
    In this paper, we investigate the information-theoretic security by modeling a cognitive radio wiretap channel under quality-of-service (QoS) constraints and interference power limitations inflicted on primary users (PUs). We initially define four different transmission scenarios regarding channel sensing results and their correctness. We provide effective secure transmission rates at which a secondary eavesdropper is refrained from listening to a secondary transmitter (ST). Then, we construct a channel state transition diagram that characterizes this channel model. We obtain the effective secure capacity which describes the maximum constant buffer arrival rate under given QoS constraints. We find out the optimal transmission power policies that maximize the effective secure capacity, and then, we propose an algorithm that, in general, converges quickly to these optimal policy values. Finally, we show the performance levels and gains obtained under different channel conditions and scenarios. And, we emphasize, in particular, the significant effect of hidden-terminal problem on information-theoretic security in cognitive radios.Comment: Submitted to CISS 201

    Rate Optimal design of a Wireless Backhaul Network using TV White Space

    Full text link
    The penetration of wireless broadband services in remote areas has primarily been limited due to the lack of economic incentives that service providers encounter in sparsely populated areas. Besides, wireless backhaul links like satellite and microwave are either expensive or require strict line of sight communication making them unattractive. TV white space channels with their desirable radio propagation characteristics can provide an excellent alternative for engineering backhaul networks in areas that lack abundant infrastructure. Specifically, TV white space channels can provide "free wireless backhaul pipes" to transport aggregated traffic from broadband sources to fiber access points. In this paper, we investigate the feasibility of multi-hop wireless backhaul in the available white space channels by using noncontiguous Orthogonal Frequency Division Multiple Access (NC-OFDMA) transmissions between fixed backhaul towers. Specifically, we consider joint power control, scheduling and routing strategies to maximize the minimum rate across broadband towers in the network. Depending on the population density and traffic demands of the location under consideration, we discuss the suitable choice of cell size for the backhaul network. Using the example of available TV white space channels in Wichita, Kansas (a small city located in central USA), we provide illustrative numerical examples for designing such wireless backhaul network

    Underlay Cognitive Radio with Full or Partial Channel Quality Information

    Get PDF
    Underlay cognitive radios (UCRs) allow a secondary user to enter a primary user's spectrum through intelligent utilization of multiuser channel quality information (CQI) and sharing of codebook. The aim of this work is to study two-user Gaussian UCR systems by assuming the full or partial knowledge of multiuser CQI. Key contribution of this work is motivated by the fact that the full knowledge of multiuser CQI is not always available. We first establish a location-aided UCR model where the secondary user is assumed to have partial CQI about the secondary-transmitter to primary-receiver link as well as full CQI about the other links. Then, new UCR approaches are proposed and carefully analyzed in terms of the secondary user's achievable rate, denoted by C2C_2, the capacity penalty to primary user, denoted by ΔC1\Delta C_1, and capacity outage probability. Numerical examples are provided to visually compare the performance of UCRs with full knowledge of multiuser CQI and the proposed approaches with partial knowledge of multiuser CQI.Comment: 29 Pages, 8 figure

    HopScotch - a low-power renewable energy base station network for rural broadband access

    Get PDF
    The provision of adequate broadband access to communities in sparsely populated rural areas has in the past been severely restricted. In this paper, we present a wireless broadband access test bed running in the Scottish Highlands and Islands which is based on a relay network of low-power base stations. Base stations are powered by a combination of renewable sources creating a low cost and scalable solution suitable for community ownership. The use of the 5~GHz bands allows the network to offer large data rates and the testing of ultra high frequency ``white space'' bands allow expansive coverage whilst reducing the number of base stations or required transmission power. We argue that the reliance on renewable power and the intelligent use of frequency bands makes this approach an economic green radio technology which can address the problem of rural broadband access
    corecore